C.R. T.P. 8 (suite)

2 Le test de Fermat

2.1 Exponentiation modulaire

Comme dit par I’énoncé, on reprend simplement ’algorithme d’exp. rapide, en réduisant modulo
m a chaque étape.

def expo_mod(x,N,m):

"""retourne le calcul de x"N par la méthode d’exp. rapide"""

aux=x

res=1

while N!=0 :
if NY%2==1:

res=(res*aux)%m
aux= (aux*aux) %m
N=N//2
return res

Cette algorithme est ¢rés rapide, car on travaille toujours modulo m a chaque étape (et que le
nombre d’étapes est en O(log N) par 'exp. rapide).

2.2 Le test de Fermat et son efficacité

Le petit théoréme de Fermat dit que si n est un nombre premier alors pour tout a € N, a”™ = a [n].
Ce théoreme fournit donc une C.N. pour qu’un nombre soit premier. Si on a un a tel que a™ # a[n],
on est sir que n n’est pas premier. On dira que n ne passe pas le test de Fermat pour la valeur a
en question (appelé aussi témoin de Fermat) et donc n’est pas premier.

a) Ecrire une fonction test_Fermat qui prend en argument un nombre n et un argument
facultatif a, qui sinon admet a=2 comme valeur par défaut, et qui teste si n < passe » le test
de Fermat pour a, en renvoyant un booléen.

def test_fermat(n,a=2):
return (expo_mod(a,n,n)==a%n)

b) (i) Faisons la liste des nombres inférieurs & 10000 qui ne sont pas premiers mais qui passent
le test de Fermat pour a = 2.

L2=[]
for i in range(2,10000):
if test_fermat(i)'!=estpremier(i):
L2.append (i)
print (L2)

On obtient : [341, 561, 645, 1105, 1387, 1729, 1905, 2047, 2465, 2701, 2821, 3277,
4033, 4369, 4371, 4681, 5461, 6601, 7957, 8321, 8481, 8911]

Remarque : 1’énoncé proposait plutét d’utiliser Erato que estpremier mais Erato renvoie

la liste des nombres premiers, il serait plus commode d’utiliser plutot la liste des nombres non
premiers, qui sont les indices des entrées False du tableau renvoyé par erato0. Autrement
dit, on fait une fonction NonPremier dont le code est identique & celui Erato sauf qu’on
garde les numéro des entrées False. On utilise alors la liste L=NonPremier (10000).

(ii) Faisons la liste des nombres inférieurs & 10000 qui ne sont pas premiers mais qui passent

le test de Fermat pour a = 3.

On peut faire la méme chose pour a = 3. On obtient :

[6, 66, 91, 121, 286, 561, 671, 703, 726, 949, 1105, 1541, 1729, 1891, 2465, 2665, 2701,



(iii) Finalement et 1a cela devient trés intéressant : la liste des nombres inférieurs & 10000
qui ne sont pas premiers mais qui passent le test de Fermat pour a = 2 et pour a = 3 se
calcule avec :

for i in range(2,10000):
p=estpremier (i)
if p==False and (test_fermat(i) and test_fermat(i,3)):
L23.append (i)
print(L23)

Ce qui donne le résultat tres intéressant suivant : [661, 1105, 1729, 2465, 2701, 2821,
6601, 8911]

Comparer la rapidité de la réponse des deux fonctions test_Fermat et testpremiernaif
sur des grands nombres : fabriquer pour cela une liste de grands nombres impairs consécutifs
(par exemple des nombres 100 chiffres) et tester la fonction testpremiernaif sur ces
nombres : lorsqu’elle « rame » sur un nombre, essayez le test de Fermat sur ce nombre.

La réponse était dans I’énoncé : Par exemple en commengant a N=10%x(100)+1 j’ai trouvé
N+36 qui résistait a testpremiernaif mais pas a Fermat avec le témoin 2..

Il suffit de faire a chaque étape, pour chaque entier n, le test de Fermat pour tous les
a€[2,n—-1] (car le cas de a = 0 et a = 1) est trivial. La fonction Carmichael suivante renvoie
True ssi n est nombre non premier qui passe le test de Fermat pour tous les a € Z i.e. tous
les a€[2,n-1].

def Carmichael(n):
if estpremier(n)==True
return False #"nombre premier"

else:
i=2
while (i<n) and (expo_mod(i,n,n)==i):
i+=1
if i==n :
return True
else

return False

Comme indiqué dans 1’énoncé la liste qu’on trouve pour les nombres de Carmichael inférieurs
a 10000 est presque la méme que celle des nombres non premiers qui passent le test de Fermat
pour a =2 et a =3, il y en a seulement un de moins!



