
T.P. 8 : algorithmes en arithmétique

1 Tests naifs de primalité

a) Ecrire une fonction estPremier qui prend en argument un entier n et renvoie un booléen
qui vaut True ssi n est premier, en testant la divisibilité par tous les nombres entiers jusqu’à
⌊

√

n⌋.

b) Ce qui suit est un extrait du sujet d’informatique commune du Concours Commun Mines-
Ponts 2019, avec une bêtise de l’énoncée corrigée

Le crible d’Eratosthène est un algorithme qui permet de déterminer la liste des nombres
premiers appartenant à l’intervalle ⟦0,N⟧. Son pseudo-code s’écrit comme suit :

Données : N , entier supérieur ou égal à 1.
Résultat : liste bool, liste de N + 1 booléens.
Début : liste bool ← liste de N + 1 booléens initialisés à Vrai

Marquer comme Faux les éléments d’indices 0 et 1 de liste bool ;
pour entier i ← 2 à ⌊

√

N⌋ faire
si i n’est pas marqué comme Faux dans liste bool alors

Marquer comme Faux tous les multiples de i différents de i dans liste bool ;
fin si

fin pour
retourner liste bool

fin

A la fin de l’exécution, si un élément de liste bool vaut Vrai alors le nombre codé par
l’indice considéré est premier. Par exemple pour N=4 une implémentation Python du crible
renvoie [False False True True False].

Ecrire une fonction erato0(N) qui réalise cette implémentation Python et renvoie list bool,
puis en déduire une fonction Erato(N) qui renvoie la liste des nombres premiers inférieurs
ou égaux à N .

2 Le test de Fermat

2.1 Exponentiation modulaire

Pour expérimenter le test de Fermat, nous commençons par modifier l’algorithme d’exponen-
tiation rapide pour le faire travailler dans les anneaux de congruences (Z/nZ,+,×).

Ecrire une fonction exp_mod(x,N,m) qui applique l’algorithme d’exponentiaton rapide pour
calculer xN , en réduisant à chaque étape le résultat modulo m, autrement dit, en remplaçant le
résultat à chaque étape par son reste dans la division euclidienne par m.

Remarque : La fonction Python pow fait exactement cela si on lui rentre l’argument facultatif
m. (A condition de ne pas prendre celle du module math !)

2.2 Le test de Fermat et son efficacité

Le petit théorème de Fermat dit que si n est un nombre premier alors pour tout a ∈ N, an ≡ a [n].
Ce théorème fournit donc une C.N. pour qu’un nombre soit premier. Si on a un a tel que an /≡ a [n],
on est sûr que n n’est pas premier. On dira que n ne passe pas le test de Fermat pour la valeur a
en question (appelé aussi témoin de Fermat) et donc n’est pas premier.

a) Ecrire une fonction test_Fermat qui prend en argument un nombre n et un argument
facultatif a, qui sinon admet a=2 comme valeur par défaut, et qui teste si n ≪ passe ≫ le test
de Fermat pour a, en renvoyant un booléen.

1

b) A l’aide de la fonction Erato et de la fonction précédente :

(i) Faire la liste des nombres inférieurs à 10000 qui ne sont pas premiers mais qui passent le
test de Fermat pour a = 2.

On en trouve 22, le premier étant 341 et le dernier 8911.

(ii) Faire la liste des nombres inférieurs à 10000 qui ne sont pas premiers mais qui passent
le test de Fermat pour a = 3.

On en trouve 30 le premier étant 6, le dernier 8911.

(iii) Finalement faire la liste des nombres inférieurs à 10000 qui ne sont pas premiers mais
qui passent le test de Fermat pour a = 2 et pour a = 3.

On en trouve 8.

c) Comparer la rapidité de la réponse des deux fonctions test_Fermat et estPremier sur
des grands nombres : fabriquer pour cela une liste de grands nombres impairs consécutifs
(par exemple des nombres 100 chiffres) et tester la fonction estPremier sur ces nombres :
lorsqu’elle ≪ rame ≫ sur un nombre, essayez le test de Fermat sur ce nombre.

Par exemple en commençant à N=10**(100)+1 j’ai trouvé N+36 qui résistait à estPremier

mais pas à Fermat avec le témoin 2..

d) Un nombre de Carmichael est un entier n ≥ 2 non premier qui vérifie la propriété que pour
tout entier a ∈ Z : an ≡ a [n].

Ecrire un programme qui donne la liste de tous les nombres de Carmichael inférieurs à
10000.

Réponse : on trouve seulement : [561, 1105, 1729, 2465, 2821, 6601, 8911].

3 Autour de l’algorithme d’Euclide

3.1 L’algorithme d’Euclide usuel :

Pour travailler le cours !
Ecrire une fonction Euclide qui reçoit deux arguments a et b supposés de type integer et renvoie

le pgcd de a et b calculé par l’algorithme d’Euclide.
La solution est dans le cours, essayez de la retrouver, puis regardez le cours !

3.2 L’algorithme d’Euclide étendu

On considère deux entiers positifs a et b avec a > b > 0 et la suite (rk) définie par r0 = a,
r1 = b et tant que rk ≠ 0, rk+1 est le reste de la division euclidienne de rk−1 par rk. On notera
rk−1 = qkrk + rk+1 cette égalité de division euclidienne.

On note N l’indice du dernier reste non nul, rN =pgcd(a, b).

a) Maths (peut être sauté en TP d’info) Vérifier qu’à chaque étape : rk = uka + vkb où
les suites (uk) et (vk) vérifient la relation de récurrence d’ordre deux suivante : uk+1 =

uk−1 − ukqk, et vk+1 = vk−1 − vkqk.

b) Info : écrire une fonction Python qui prend deux arguments a,b (supposés entiers non
nuls) et qui renvoie d,u,v où d est le pgcd de a et b et u,v sont tels que au +bv=d.

Pour cela on calculera les suites (rk), (qk), (uk) et (vk) récurrentes d’ordre deux, (sauf qk)
comme suit :

● Initialisation (double sauf pour qk) :

⎧
⎪⎪
⎨
⎪⎪
⎩

r0 = a, q0 = 0, u0 = 1, v0 = 0,

r1 = b, u1 = 0, v1 = 1.

● Formule de récurrence : pour tout k ≥ 1, tant que rk ≠ 0

i) (qk, rk+1) est le couple quotient-reste de la division euclidienne de rk−1 par rk,

ii) uk+1 = uk−1 − ukqk, et vk+1 = vk−1 − vkqk.

Indication : une illustration concrète.

2

97 = 5 × 18 + 7,

18 = 2 × 7 + 4,

7 = 1 × 4 + 3,

4 = 1 × 3 + 1,

3 = 3 × 1 + 0.

7 = 1 × 97 − 5 × 18,

4 = −2 × 97 + 11 × 18,

3 = 3 × 97 − 16 × 18,

1 = −5 × 97 + 27 × 18.

4 Bonus pour les plus intéressés, retour aux tests de prima-
lités : algorithme de Miller Rabin

On veut savoir si un nombre n, impair, est premier. On considère le nombre pair n − 1 qu’on
écrit sous la forme n − 1 = 2k.m avec m impair.

On considère le témoin de Fermat a = 2, (on pourra ensuite changer de témoin) et la suite des

puissances de a de la forme am, a2m, a4m jusqu’à a2
k.m (notons qu’on passe d’un terme de la suite

à son suivant par élévation au carré) qu’on va considérer modulo n.
Remarque : La suite ne peut pas être réduite à un seul terme car k ≠ 0 sinon n− 1 serait impair.

— Considérons le premier terme am : s’il est congru à 1 ou à −1 modulo n, alors a2
k.m sera

congru à 1 modulo n et on dit que n est probablement premier puisqu’il passe le test de
Fermat sous la forme an−1 ≡ 1 [n].

— Sinon, on passe au terme suivant qui est son carré :
— si a2m ≡ 1 [n] alors que am /≡ 1 [n] et am /≡ −1 [n] alors on est sûr que n n’est pas premier.

En effet, dans ce cas, x = am est une solution de l’équation x2
≡ 1 [n] qui n’est ni −1 ni

1 modulo n : or pour un nombre n premier ce sont les deux seules solutions.
Donc l’algorithme renvoie ≪ n n’est pas premier ≫.

— si a2m ≡ −1 [n] et qu’on n’est pas au dernier terme de la suite on aura encore a4m ≡ 1 [n]
et on déclare n probablement premier.

— sinon on continue avec a4m, etc...

— à l’avant dernier terme de la suite : a2
k−1m, comme précédemment :

— si a2
k−1m

≡ 1 [n] on est sûr que n non premier.

— si a2
k−1m

≡ −1 [n] on déclare n probablement premier.

— si a2
k−1m n’est congru ni à 1 ni à −1 modulo n, on est sûr que n n’est pas premier. En

effet :
● ou bien on aura son carré an−1 qui vérifie an−1 /≡ 1 [n] et donc il ne passe pas le test
de Fermat
● ou bien on aura son carré qui est congru à 1 mais donc 1 aura une racine carrée dans
Z/nZ différente de 1 et −1 et donc n n’est pas premier dans tous les cas.

Travail à faire : implémenter l’algorithme précédent en une fonction MillerRabin(n) qui renvoie
True si n est probablement premier pour a = 2 et False sinon.

Les faux nombres premiers donnés par Miller-Rabin pour a = 2 inférieurs à 10000 sont 2047
3277 4033 4681 8321

En comparaison avec seulement le test de Fermat pour a = 2, on a : 341 561 645 1105 1387 1729
1905 2047 2465 2701 2821 3277 4033 4369 4371 4681 5461 6601 7957 8321 8481 8911.

MIEUX : si on teste avec a=2 et a=3, alors tous les nombres inférieurs à 10000 donnés premiers
par Miller-Rabin sont vraiment premiers.

Remarque importante : Miller Rabin ne cherche pas un diviseur de n : s’il répond que n
n’est pas premier, reste encore éventuellement à en chercher un diviseur. Ainsi on doit coupler
Miller-Rabin avec un autre algorithme.

3

Complément au TP 8 : DS 2 2018/2019

Entrée chinoise

Ecrire une fonction python f qui prend en argument deux entiers m,n supposés premiers entre
eux, deux entiers a et b quelconques et renvoie l’unique x ∈ ⟦0,mn−1⟧ vérifiant les deux conditions
⎧
⎪⎪
⎨
⎪⎪
⎩

x ≡ a [m],

x ≡ b [n].
Cette fonction devra faire un nombre de calculs qui est un O(min(m,n)), ce qui

signifie concrètement que le nombre de tours de boucle sera majoré par min(m,n) (en faisant un
nombre fixe d’opérations par tour).

Problème : Algorithmes de factorisation d’entiers

1) L’algorithme des divisions successives :

a) Justifier que si m ∈ N≥2 n’est pas premier alors m admet un diviseur non trivial inférieur ou égal à√
m.

b) Ecrire une fonction Testpremier qui prend en argument un entier naturel m, parcourt tous les
entiers de 2 jusqu’à ⌊

√
m⌋ au plus, et renvoie False dès que l’un de ces entiers divise m, et True si

m est premier.

c) Modifier le programme précédent pour fabriquer une fonction Decompose qui prend en argument
un entier m et renvoie toujours True si m est premier et , si m n’est pas premier, renvoie un couple
(d1, d2) tel que m = d1.d2 avec 1 < d1 <m et 1 < d2 <m (décomposition non triviale).

d) Nombre de chiffres dans l’écriture décimale d’un nombre :

i) Si x ∈ R+∗ s’écrit avec N chiffres en base 10, exprimer N à l’aide de log10(x).

ii) Montrer que si x ∈ R+ alors ⌊x
2
⌋ = ⌊ ⌊x⌋

2
⌋.

iii) Si m est un nombre ayant N chiffres en base dix, que dire du nombre de chiffres de
√
m ?

e) Parmi tous les nombres m ayant N chiffres avec N fixé, pour quels nombres non premiers l’algo-
rithme Testpremier sera-t-il le plus long pour répondre ?

2) La méthode de factorisation de Fermat

On considère ici une autre méthode de factorisation qui peut entrâıner beaucoup de calculs (encore
plus qu’au 1) !) mais qui est peu coûteuse précisément dans le cas où celle du 1) est très coûteuse. Soit
m ∈ N le nombre qu’on cherche à factoriser.

Idée de base : On considère l’équation (F) ∶ x2 − y2 =m d’inconnue (x, y) ∈ N2.
Elle s’écrit encore (x − y)(x + y) =m. Donc si on trouve une solution (x, y) ∈ N2 telle que x − y ≠ 1, on

saura que m n’est pas premier et on aura une factorisation non-triviale de m.
Géométriquement l’ensemble des solutions de (F) est l’ensemble des points à coordonnées entières sur

H = {(x, y) ∈ (R+)2, x2 − y2 =m} qui est donc l’intersection d’une hyperbole avec le premier quadrant.

2.1) La version la plus näıve de l’algorithme :

L’intersection de H avec l’axe des abscisse est le point (
√
m,0). Si ce point est à coordonnées entières

i.e. si
√
m ∈ N, on a gagné : m = (

√
m)2 avec

√
m ∈ N Sinon on va tester pour chaque xk = ⌈

√
m ⌉ + k pour

k = 1,2, . . . si le point d’abscisse xk sur H a une ordonnée entière, autrement dit si x2k −m est un carré
d’entier.
N.B. Pour un réel x, ⌈x ⌉ désigne la ≪ partie entière supérieure ≫ c’est à dire le plus petit entier supérieur
ou égal à x. Si x n’est pas un entier, ⌈x ⌉ = ⌊x⌋+1. Si x est entier ⌈x⌉ = x. Dans le module math, elle s’appelle
ceil.

a) Comment tester si un entier est un carré d’entier ? La fonction sqrt du module math (ou le ∗∗(1/2))
renvoie un flottant, donc on ne peut pas complètement lui faire confiance. Néanmoins le calcul fait
par sqrt a l’avantage d’être très rapide (il repose, nous le verrons plus tard, sur une méthode

4

d’analyse qui converge très vite), donc on va quand même l’utiliser mais après on doit vérifier son
résultat.. comment ? Ecrire ainsi une fonction TestCarre rapide et fiable qui prend un entier n en
argument et renvoie True ou False suivant que n est un carré ou pas.

b) Remarque (inutile pour la suite) Fermat connaissait une C.N. sur les deux derniers chiffres
d’un carré. Il savait que les deux derniers chiffres de l’écriture décimale d’un carré sont dans une
liste L qui commence par 00,01,04,09,16,21, ... Cela lui permettait d’éliminer très vite des nombres
dans l’algorithme précédent qu’il effectuait, lui, sans ordinateur. Ecrire un programme Python qui
permet d’obtenir la liste L.

c) Ecrire une fonction DecompFermat(m) qui prend en argument un entier m, met en oeuvre l’algo-
rithme de Fermat décrit ci-dessus et s’arrête au premier k tel que x2k −m est un carré qu’on note
y2k. La fonction renvoie alors le couple (xk − yk, xk + yk).

d) Montrer que si m est un entier impair la fonction DecompFermat s’arrête toujours. Que renvoie-t-
elle si m est premier ? Que renvoie-t-elle pour m = 32 × 7 (il s’agit moins ici de mettre en oeuvre
l’algorithme que de comprendre quelle décomposition de m est renvoyée).

2.2) Une petite amélioration pour ne pas avoir de carrés à calculer

a) Avec les notations du 2.1. trouver une relation simple entre x2k+1 −m et x2k −m.

b) En déduire une fonction DecompFermat2 où, une fois qu’on a calculé x20, on n’a plus besoin de
calculer de carré (sauf pour TestCarre).

2.3) Complexité de l’algorithme

On suppose toujours que m est un entier impair. La méthode de Fermat peut donner des calculs très
longs, mais bien sûr elle est intéressante précisément dans le cas où le 1) était très long, à savoir si le plus
petit facteur premier de m est proche de

√
m. Bien sûr si m est un carré parfait, l’algorithme termine

immédiatement.
Sinon, notons m = pq avec 1 < p<

√
m et

√
m < q <m, tels que p soit le plus grand diviseur de m inférieur

à
√
m (et donc q le plus petit diviseur de m supérieur à

√
m) et µ = (p + q)/2.

Donner alors une formule donnant exactement le nombre de tours de boucle en fonction de l’écart entre
µ et ⌈

√
m⌉.

3) L’algorithme p − 1 de Pollard

L’algorithme nâıf du 1) est efficace seulement si un nombre m a au moins un ≪ petit ≫ facteur premier,
l’algorithme de l’hyperbole du 2) au contraire si m a des facteurs proches de

√
m mais ces deux algorithmes

sont trop lents pour de nombreux grands nombres m dont le plus petit facteur premier est de taille
≪ intermédiaire ≫.

Le test de Miller-Rabin présenté à la fin du TP permet de détecter ≪ la plupart ≫ des nombres non
premiers, mais pour ces nombres, il ne fournit pas de diviseur. L’algorithme qui suit va permettre d’en
trouver assez efficacement.

3.0. Un bébé exemple et deux outils

On considère m = 403. On considère 1les nombres successifs de la forme ak = 2k! [m] à partir de k = 1.
A chaque fois, on calcule le pgcd de ak − 1 et de m, on s’arrête dès qu’on obtient autre chose que 1. Ici,

on obtient :

a1 ≡ 1 [403] 1 ∧ 403 = 1,
a2 = 22 ≡ 4 [403] 3 ∧ 403 = 1,
a3 = 26 ≡ 64 [403] 63 ∧ 403 = 1,
a4 = 224 ≡ 326 [403] 325 ∧ 403 = 13.

On vient de trouver un diviseur premier p = 13 de 403. Que s’est-il passé ?
On sait, grâce au petit théorème de Fermat, que pour tout nombre premier p ≠ 2, 2p−1 ≡ 1 [p]. Autrement

dit que 2p−1 − 1 est un multiple de p.
Dans l’exemple précédent, pour p = 13, 212−1 est divisible par 13. Mais a4−1 = 224−1 = (212−1)(212+1)

donc a4 − 1 est bien un multiple de p = 13.
L’essentiel : le p − 1 = 12 se trouve dans l’exposant 4! de a3.

1. On pourrait remplacer 2 par un autre nombre premier, comme 3, le principe est toujours celui des témoins de
Fermat, cf. T.P. et fin de ce problème.

5

Ainsi p = 13, qui est un diviseur premier de 403, sera un diviseur commun à 403 et a3 − 1.
Outils :

a) L’algorithme d’Euclide. Ecrire une fonction Euclide qui prend en argument deux entiers naturels
a et b et renvoie pgcd(a, b) calculé par l’algorithme d’Euclide.

b) L’exponentiation rapide. La fonction ∗∗ de Python (raccourci syntaxique de la fonction pow) réalise
une exponentiation rapide. Rappeler l’idée (sans écrire l’algorithme en détail ni son implémentation
en Python) de cet algorithme et l’ordre de grandeur du nombre d’opérations pour le calcul de am

par la méthode d’exp. rapide

3.1. Explication de la méthode dans le cas général

Donnons nous un nombre m, non premier, dont on cherche un diviseur non trivial (si possible même
un diviseur premier).

a) On considère la suite des nombres ak = 2k! successifs à partir de k = 1. Déterminer une relation
de récurrence simple entre ak et ak−1 pour tout k ≥ 2. Cette relation permettra d’économiser des
calculs dans la boucle.

b) A chaque étape k, on calcule gk = pgcd((ak%m) − 1,m) où ak%m désigne le reste de la division
euclidienne de ak par m.

Justifier que gk = pgcd(ak − 1,m). Pourquoi calculer plutôt pgcd((ak%m) − 1,m) ?

c) Montrer qu’ à chaque étape gk divise gk+1.

d) La suite des (gk) commence avec g1 = 1, elle peut rester à 1 pendant un certain un temps, mais
si on fixe un certain diviseur premier p de m, il existe un rang n tel que le nombre p − 1 divise
l’exposant n! de an. Démontrer qu’alors on aura p∣gn.

On arrête l’algorithme pour la première valeur de n telle que gn ≠ 1, en espérant que la valeur gn
obtenue ne soit pas m lui-même mais bien un diviseur non trivial de m.

3.2. Script Python et cas de tests négatifs.

a) Ecrire une fonction Pollard qui prend en argument un entier m et renvoie le premier gk ≠ 1 de
l’algorithme précédent.

b) Si on teste cette fonction on va voir qu’elle marche souvent i.e. le gk renvoyé sera souvent différent
de m pour un nombre m non premier. Cependant si on considère m = 65, on obtient (tableau à
recopier et compléter sur votre copie) :

a1 ≡ 2[65] 1 ∧ 65 = 1,
a2 = 22 ≡ 4 [65] 3 ∧ 65 = 1,
a3 = ≡ [65] ∧ 65 = ,
a4 = ≡ [65] ∧ 65 = . Echec : on n’a pas trouvé de diviseur non trivial.

c) Expliquer cet échec à partir de la décomposition m = 65 = 5 × 13

d) Généraliser le problème d’échec rencontré au b) et c) : pour quel type de nombres se produira-t-il ?

3.3. Parade possible quand l’algorithme ne fonctionne pas avec a1 = 2

On peut essayer de remplacer 2 par 3 dans la définition de la suite ak.Autrement dit ak = 3k!.
a) Reprendre l’algorithme pour m = 65 en remarquant que 32×3 ≡ 14 [65].
b) Expliquer ce qui se passe : pourquoi l’algorithme réussit-il ici ?

6

