T.P. 8 : algorithmes en arithmétique

1 Tests naifs de primalité

a) Ecrire une fonction estPremier qui prend en argument un entier n et renvoie un booléen
qui vaut True ssi n est premier, en testant la divisibilité par tous les nombres entiers jusqu’a
[v/a].

b) Ce qui suit est un extrait du sujet d’informatique commune du Concours Commun Mines-
Ponts 2019, avec une bétise de I’énoncée corrigée
Le crible d’Eratosthéne est un algorithme qui permet de déterminer la liste des nombres
premiers appartenant a Uintervalle [0, N]. Son pseudo-code s’écrit comme suit :

Données : N, entier supérieur ou égal a 1.

Résultat : 1liste_bool, liste de IV + 1 booléens.

Début : liste_bool <« liste de N +1 booléens initialisés a Vrai
Marquer comme Faux les éléments d’indices 0 et 1 de 1iste_bool;
pour entier i < 2 & [/N| faire

si i n’est pas marqué comme Faux dans liste_bool alors
Marquer comme Faux tous les multiples de i différents de i dans 1iste_bool;
fin si
fin pour
retourner liste_bool

fin

A la fin de I'exécution, si un élément de liste_bool vaut Vrai alors le nombre codé par
I'indice considéré est premier. Par exemple pour N=4 une implémentation Python du crible
renvoie [False False True True False].

Ecrire une fonction erato0(N) qui réalise cette implémentation Python et renvoie 1ist_bool,
puis en déduire une fonction Erato(N) qui renvoie la liste des nombres premiers inférieurs
ou égaux a N.

2 Le test de Fermat

2.1 Exponentiation modulaire

Pour expérimenter le test de Fermat, nous commengons par modifier [’algorithme d’exponen-
tiation rapide pour le faire travailler dans les anneaux de congruences (Z[nZ,+,x).

Ecrire une fonction exp_mod(x,N,m) qui applique l'algorithme d’exponentiaton rapide pour
calculer 2%, en réduisant ¢ chaque étape le résultat modulo m, autrement dit, en remplacant le
résultat a chaque étape par son reste dans la division euclidienne par m.

Remarque : La fonction PYTHON pow fait exactement cela si on lui rentre ’argument facultatif
m. (A condition de ne pas prendre celle du module math!)

2.2 Le test de Fermat et son efficacité

Le petit théoreme de Fermat dit que si n est un nombre premier alors pour tout a € N, a™ = a [n].
Ce théoreéme fournit donc une C.N. pour qu’un nombre soit premier. Si on a un a tel que a™ # a[n],
on est sir que n n’est pas premier. On dira que n ne passe pas le test de Fermat pour la valeur a
en question (appelé aussi témoin de Fermat) et donc n’est pas premier.

a) Ecrire une fonction test_Fermat qui prend en argument un nombre n et un argument
facultatif a, qui sinon admet a=2 comme valeur par défaut, et qui teste si n < passe » le test
de Fermat pour a, en renvoyant un booléen.

b)

A T’aide de la fonction Erato et de la fonction précédente :

(i) Faire la liste des nombres inférieurs & 10000 qui ne sont pas premiers mais qui passent le
test de Fermat pour a = 2.

On en trouve 22, le premier étant 341 et le dernier 8911.

(ii) Faire la liste des nombres inférieurs & 10000 qui ne sont pas premiers mais qui passent
le test de Fermat pour a = 3.

On en trouve 30 le premier étant 6, le dernier 8911.

(iii) Finalement faire la liste des nombres inférieurs & 10000 qui ne sont pas premiers mais
qui passent le test de Fermat pour a = 2 et pour a = 3.

On en trouve 8.

Comparer la rapidité de la réponse des deux fonctions test_Fermat et estPremier sur
des grands nombres : fabriquer pour cela une liste de grands nombres impairs consécutifs
(par exemple des nombres 100 chiffres) et tester la fonction estPremier sur ces nombres :
lorsqu’elle <« rame » sur un nombre, essayez le test de Fermat sur ce nombre.

Par exemple en commencant a N=10** (100)+1 j’ai trouvé N+36 qui résistait ¢ estPremier
mais pas a Fermat avec le témoin 2..

Un nombre de Carmichael est un entier n > 2 non premier qui vérifie la propriété que pour
tout entier a € Z : a™ = a[n].

Ecrire un programme qui donne la liste de tous les nombres de Carmichael inférieurs a
10000.

Réponse : on trouve seulement : [661, 1105, 1729, 2465, 2821, 6601, 8911].

3 Autour de lalgorithme d’Euclide

3.1

L’algorithme d’Euclide usuel :

Pour travailler le cours!

Ecrire une fonction Euclide qui recoit deux arguments a et b supposés de type integer et renvoie
le pged de a et b calculé par 'algorithme d’Euclide.

La solution est dans le cours, essayez de la retrouver, puis regardez le cours!

3.2

L’algorithme d’Euclide étendu

On considere deux entiers positifs a et b avec a > b > 0 et la suite (r) définie par r¢ = a,
ry = b et tant que 7, # 0, 7541 est le reste de la division euclidienne de r;_; par rx. On notera
Tk-1 = QrTk + Tke1 cette égalité de division euclidienne.

On note N l'indice du dernier reste non nul, ry =pgcd(a, b).

a)

b)

Maths (peut étre sauté en TP d’info) Vérifier qu’a chaque étape : ry = uga + vib ot

les suites (ug) et (vg) vérifient la relation de récurrence d’ordre deux suivante : upy; =

Uk-1 = UkGk, €0 Vkt1 = V-1 — Vkqk-

Info : écrire une fonction PYTHON qui prend deux arguments a,b (supposés entiers non

nuls) et qui renvoie d,u,v ot d est le pged de a et b et u,v sont tels que au +bv=d.

Pour cela on calculera les suites (r1), (gx), (ug) et (vg) récurrentes d’ordre deux, (sauf gx)

comme suit :

e Initialisation (double sauf pour g¢;) : r0=a, g0 =0, up =1, v =0,
ry=b,uy =0,v7 = 1.

e Formule de récurrence : pour tout k > 1, tant que ri #0

i) (qk,7k+1) est le couple quotient-reste de la division euclidienne de r;_; par 7,
i) Ugs1 = Uk-1 — UKk, € Vk+1 = V-1 — UGk

Indication : une illustration concrete.

97=5x18+7, 7 = 1x97-5x18,
18=2x7+4, 4 = -2x97+11x18,
7T=1x4+3, 3 = 3x97-16x 18,
4=1x3+1, 1 = -5x97+27x18.
3=3x1+0.

4 Bonus pour les plus intéressés, retour aux tests de prima-
lités : algorithme de Miller Rabin

On veut savoir si un nombre n, impair, est premier. On considere le nombre pair n — 1 qu’on
écrit sous la forme n — 1 = 2¥.m avec m impair.

On counsideére le témoin de Fermat a = 2, (on pourra ensuite changer de témoin) et la suite des
2k m (

puissances de a de la forme a™, a®™, a*™ jusqu’a a notons qu’on passe d’un terme de la suite

a son suivant par élévation au carré) qu’on va considérer modulo n.
Remarque : La suite ne peut pas étre réduite a un seul terme car k # 0 sinon n — 1 serait impair.
— Considérons le premier terme a™ : s’il est congru a 1 ou a -1 modulo n, alors a?"™ sera
congru a 1 modulo n et on dit que n est probablement premier puisqu’il passe le test de
Fermat sous la forme a™ ' =1 [n].
— Sinon, on passe au terme suivant qui est son carré :
— sia®™ =1 [n] alors que a™ # 1[n] et a™ # —1[n] alors on est stir que n n’est pas premier.
En effet, dans ce cas, z = a™ est une solution de I’équation 2% = 1[n] qui n’est ni —1 ni
1 modulo n : or pour un nombre n premier ce sont les deux seules solutions.
Donc I’algorithme renvoie <« n n’est pas premier ».
— sia®™=-1 [n] et qu'on n’est pas au dernier terme de la suite on aura encore a*™ = 1[n]
et on déclare n probablement premier.
— sinon on continue avec a?™, etc...

2k—1

— a l'avant dernier terme de la suite : a* ™, comme précédemment :

—sia? T m=1 [n] on est slir que n» non premier.

— sia® ™ =-1 [n] on déclare n probablement premier.

— i a2 '™ west congru ni & 1 ni & —1 modulo n, on est siir que n n’est pas premier. En
effet :
e ou bien on aura son carré ™! qui vérifie a®* # 1[n] et donc il ne passe pas le test
de Fermat

e ou bien on aura son carré qui est congru a 1 mais donc 1 aura une racine carrée dans
Z|nZ différente de 1 et —1 et donc n n’est pas premier dans tous les cas.
Travail a faire : implémenter ’algorithme précédent en une fonction MillerRabin(n) qui renvoie
True si n est probablement premier pour a = 2 et False sinon.
Les faux nombres premiers donnés par Miller-Rabin pour a = 2 inférieurs a 10000 sont 2047
3277 4033 4681 8321
En comparaison avec seulement le test de Fermat pour a = 2, on a : 341 561 645 1105 1387 1729
1905 2047 2465 2701 2821 3277 4033 4369 4371 4681 5461 6601 7957 8321 8481 8911.
MIEUX : si on teste avec a=2 et a=3, alors tous les nombres inférieurs a 10000 donnés premiers
par Miller-Rabin sont vraiment premiers.

Remarque importante : Miller Rabin ne cherche pas un diviseur de n : s’il répond que n
n’est pas premier, reste encore éventuellement & en chercher un diviseur. Ainsi on doit coupler
Miller-Rabin avec un autre algorithme.

Complément au TP 8 : DS 2 2018/2019

ENTREE CHINOISE

Ecrire une fonction python f qui prend en argument deux entiers m,n supposés premiers entre
eux, deux entiers a et b quelconques et renvoie I'unique z € [0, mn — 1] vérifiant les deux conditions

x =alm],

x =b[n].
signifie concrétement que le nombre de tours de boucle sera majoré par min(m,n) (en faisant un
nombre fixe d’opérations par tour).

Cette fonction devra faire un nombre de calculs qui est un O(min(m,n)), ce qui

PROBLEME : ALGORITHMES DE FACTORISATION D’ENTIERS

1) L’algorithme des divisions successives :

a) Justifier que si m € Ny2 n’est pas premier alors m admet un diviseur non trivial inférieur ou égal a
vm.
b) Ecrire une fonction Testpremier qui prend en argument un entier naturel m, parcourt tous les

entiers de 2 jusqu’a |/m] au plus, et renvoie False dés que I'un de ces entiers divise m, et True si
m est premier.

¢) Modifier le programme précédent pour fabriquer une fonction Decompose qui prend en argument
un entier m et renvoie toujours True si m est premier et , si m n’est pas premier, renvoie un couple
(d1,d2) tel que m =di.d2 avec 1 <dy <m et 1 <dz <m (décomposition non triviale).

d) Nombre de chiffres dans I’écriture décimale d’un nombre :

i) Si z e R™™ s’écrit avec N chiffres en base 10, exprimer N a laide de log;q(z).

ii) Montrer que si z € R* alors [g] = [%J

iii) Si m est un nombre ayant N chiffres en base dix, que dire du nombre de chiffres de \/m ?

e) Parmi tous les nombres m ayant N chiffres avec N fixé, pour quels nombres non premiers ’algo-
rithme Testpremier sera-t-il le plus long pour répondre ?

2) La méthode de factorisation de Fermat

On considere ici une autre méthode de factorisation qui peut entrainer beaucoup de calculs (encore
plus qu’au 1)!) mais qui est peu coliteuse précisément dans le cas ou celle du 1) est trés couteuse. Soit
m € N le nombre qu’on cherche a factoriser.

Idée de base : On considere I’équation (F) : z® - y* = m d’inconnue (z,y) € N°.

Elle s’écrit encore (x — y)(x +y) = m. Donc si on trouve une solution (z,y) € N? telle que z -y # 1, on
saura que m n’est pas premier et on aura une factorisation non-triviale de m.

Géométriquement ’ensemble des solutions de (F') est ’ensemble des points & coordonnées entiéres sur
H = {(z,y) € (R")?, z* —y*® = m} qui est donc l'intersection d’une hyperbole avec le premier quadrant.

2.1) La version la plus naive de 1’algorithme :

L’intersection de H avec ’axe des abscisse est le point (y/m,0). Si ce point est & coordonnées entieres
i.e. si/me N, on agagné: m=(y/m)> avec /m € N Sinon on va tester pour chaque x, = [\/m | +k pour
k=1,2,... sile point d’abscisse z; sur H a une ordonnée entiére, autrement dit si 2 — m est un carré
d’entier.
N.B. Pour un réel z, [z | désigne la « partie entiére supérieure > c’est & dire le plus petit entier supérieur
ou égal & z. Si x n’est pas un entier, [z | = |z|+1. Si = est entier [z] = z. Dans le module math, elle s’appelle
ceil.

a) Comment tester si un entier est un carré d’entier ? La fonction sqrt du module math (ou le * *(1/2))
renvoie un flottant, donc on ne peut pas complétement lui faire confiance. Néanmoins le calcul fait
par sqrt a l'avantage d’étre trés rapide (il repose, nous le verrons plus tard, sur une méthode

d’analyse qui converge tres vite), donc on va quand méme ’'utiliser mais apres on doit vérifier son
résultat.. comment ? Ecrire ainsi une fonction TestCarre rapide et fiable qui prend un entier n en
argument et renvoie True ou False suivant que n est un carré ou pas.

b) Remarque (inutile pour la suite) Fermat connaissait une C.N. sur les deux derniers chiffres
d’un carré. Il savait que les deux derniers chiffres de 1’écriture décimale d’un carré sont dans une
liste L qui commence par 00,01, 04,09, 16,21, ... Cela lui permettait d’éliminer tres vite des nombres
dans 'algorithme précédent qu’il effectuait, lui, sans ordinateur. Ecrire un programme Python qui
permet d’obtenir la liste L.

¢) Ecrire une fonction DecompFermat (m) qui prend en argument un entier m, met en oeuvre l’algo-
rithme de Fermat décrit ci-dessus et s’arréte au premier k tel que 2 —m est un carré qu’on note
yi. La fonction renvoie alors le couple (zx — Yk, Tk + Yk).

d) Montrer que si m est un entier impair la fonction DecompFermat s’arréte toujours. Que renvoie-t-
elle si m est premier ? Que renvoie-t-elle pour m = 3% x 7 (il s’agit moins ici de mettre en oeuvre
lalgorithme que de comprendre quelle décomposition de m est renvoyée).

2.2) Une petite amélioration pour ne pas avoir de carrés a calculer

a) Avec les notations du 2.1. trouver une relation simple entre zi, —m et T3 —m.

b) En déduire une fonction DecompFermat2 oli, une fois qu'on a calculé zZ, on n’a plus besoin de
calculer de carré (sauf pour TestCarre).

2.3) Complexité de I’algorithme

On suppose toujours que m est un entier impair. La méthode de Fermat peut donner des calculs trés
longs, mais bien sir elle est intéressante précisément dans le cas ou le 1) était tres long, a savoir si le plus
petit facteur premier de m est proche de \/m. Bien siir si m est un carré parfait, 1’algorithme termine
immédiatement.

Sinon, notons m = pq avec 1 < p<\/m et /m < q < m, tels que p soit le plus grand diviseur de m inférieur
a y/m (et donc q le plus petit diviseur de m supérieur & /m) et u=(p+q)/2.

Donner alors une formule donnant exactement le nombre de tours de boucle en fonction de ’écart entre

p et [/m].

3) L’algorithme p-1 de Pollard

L’algorithme naif du 1) est efficace seulement si un nombre m a au moins un < petit » facteur premier,
lalgorithme de ’hyperbole du 2) au contraire si m a des facteurs proches de \/m mais ces deux algorithmes
sont trop lents pour de nombreux grands nombres m dont le plus petit facteur premier est de taille
« intermédiaire ».

Le test de Miller-Rabin présenté a la fin du TP permet de détecter < la plupart » des nombres non
premiers, mais pour ces nombres, il ne fournit pas de diviseur. L’algorithme qui suit va permettre d’en
trouver assez efficacement.

3.0. Un bébé exemple et deux outils

On considére m = 403. On considére 'les nombres successifs de la forme ay = 2¥' [m] & partir de k = 1.
A chaque fois, on calcule le pged de ay, — 1 et de m, on s’arréte dés qu’on obtient autre chose que 1. Ici,
on obtient :

a; =1 [403] 1A403=1,

az = 2% =4 [403] 37403 =1,
as=2° =64[403] 63A403=1,
as = 2** =326[403] 3251403 = 13.

On vient de trouver un diviseur premier p = 13 de 403. Que s’est-il passé?

On sait, grace au petit théoréme de Fermat, que pour tout nombre premier p # 2,277 = 1 [p]. Autrement
dit que 277! — 1 est un multiple de p.

Dans I’exemple précédent, pour p = 13, 2'2 ~1 est divisible par 13. Mais a4 -1 = 2** -1 = (22 -1)(2"?+1)
donc a4 — 1 est bien un multiple de p = 13.

L’essentiel : le p— 1 = 12 se trouve dans l'exposant 4! de as.

1. On pourrait remplacer 2 par un autre nombre premier, comme 3, le principe est toujours celui des témoins de
Fermat, cf. T.P. et fin de ce probléme.

Ainsi p = 13, qui est un diviseur premier de 403, sera un diviseur commun a 403 et a3z — 1.
Outils :

a)

b)

L’algorithme d’Euclide. Ecrire une fonction Euclide qui prend en argument deux entiers naturels
a et b et renvoie pged(a,b) calculé par lalgorithme d’Euclide.

L’exponentiation rapide. La fonction ** de Python (raccourci syntaxique de la fonction pow) réalise
une exponentiation rapide. Rappeler {’idée (sans écrire 'algorithme en détail ni son implémentation
en Python) de cet algorithme et 'ordre de grandeur du nombre d’opérations pour le calcul de a™
par la méthode d’exp. rapide

3.1. Explication de la méthode dans le cas général

Donnons nous un nombre m, non premier, dont on cherche un diviseur non trivial (si possible méme
un diviseur premier).

a)

On considere la suite des nombres aj = 2% successifs & partir de k = 1. Déterminer une relation
de récurrence simple entre ay et arp—1 pour tout k > 2. Cette relation permettra d’économiser des
calculs dans la boucle.

A chaque étape k, on calcule g = pged((ax%m) — 1,m) ou ar%m désigne le reste de la division
euclidienne de aj par m.

Justifier que g = pged(ax — 1,m). Pourquoi calculer plutot pged((ax%m) —1,m)?

Montrer qu’” & chaque étape gi divise gg+1-

La suite des (gr) commence avec g1 = 1, elle peut rester & 1 pendant un certain un temps, mais
si on fixe un certain diviseur premier p de m, il existe un rang n tel que le nombre p — 1 divise
Pexposant n! de a,. Démontrer qu’alors on aura p|gn.

On arréte I'algorithme pour la premiere valeur de n telle que g, # 1, en espérant que la valeur g,
obtenue ne soit pas m lui-méme mais bien un diviseur non trivial de m.

3.2. Script Python et cas de tests négatifs.

a)

b)

¢)
d)

Ecrire une fonction Pollard qui prend en argument un entier m et renvoie le premier g # 1 de
I’algorithme précédent.

Si on teste cette fonction on va voir qu’elle marche souvent i.e. le g, renvoyé sera souvent différent
de m pour un nombre m non premier. Cependant si on considére m = 65, on obtient (tableau a
recopier et compléter sur votre copie) :

a1 = 2[65] 1A65=1,
az=2>=4[65] 3A65=1,
as= = [65] A65= ,
as= = [65] A65= . Echec : on n’a pas trouvé de diviseur non trivial.

Expliquer cet échec & partir de la décomposition m =65 =5 x 13

Généraliser le probléeme d’échec rencontré au b) et ¢) : pour quel type de nombres se produira-t-il ?

3.3. Parade possible quand I’algorithme ne fonctionne pas avec a; =2

On peut essayer de remplacer 2 par 3 dans la définition de la suite ax.Autrement dit ay = 3k,
a) Reprendre l'algorithme pour m = 65 en remarquant que 323 =14 [65].
b) Expliquer ce qui se passe : pourquoi l’algorithme réussit-il ici ?

