
T.P. 7 : graphiques et un exemple de résol. num. d’E.D. (Euler)

1 Un peu de plot avec le module matplotlib.pyplot

Dans ce qui suit, on importera ce module avec l’abréviation standard plt autrement dit, on
fera :

import matplotlib.pyplot as plt

1.1 Ce que fait la fonction plot :

Par défaut, pour deux listes X et Y (simples) plot(X,Y) va tracer des segments entre les points
(X[i],Y[i]) successifs.

Pour mieux comprendre, essayer :

X=[1,2,3]

Y=[3,2,4]

plt.plot(X,Y) # crée la courbe mais ne l’affiche pas

plt.show() # affiche la courbe

plt.savefig("essai-courbe.pdf",format=’pdf’)# fabrique un pdf si on veut

Ainsi pour les points Mi = (xi, yi), X représente le tableau [x0, x1, x2] des abscisses et Y = [y0, y1, y2]
le tableau des ordonnées.

1.2 Comment tracer un graphe de fonction ?

Par exemple on veut tracer le graphe de x ↦ x2 sur [−3,3] ou d’une autre fonction de notre
choix. w a) Ecrire une fonction subdivise(a,b,n) qui prend en arguments deux flottants a et b,
un entier n et qui renvoie une liste python qui contient les éléments de la subdivision régulière de
[a, b] en n segments, bornes comprises.

b) Ecrire une fonction Mappage(f,X) qui prend en argument une fonction f qui s’applique à
des flottants, et un liste X = [x0, . . . ,xn−1] de flottants et renvoie la liste [f(x0), . . . ,f(xn−1)].

c) En déduire une fonction Trace(f,a,b,n) qui trace le graphe d’une fonction f sur un intervalle
[a,b] comme une ligne polygonale obtenue en reliant les valeurs de (xi, f(xi)) pour la subdivision
régulière de [a, b] en n segments.

d) Essayer votre fonction Trace sur la fonction x ↦ x2 sur [−3,3], sur la fonction sin sur [0, π]
(avec math pour avoir sin et pi). Quelle valeur de n suffit-elle pour avoir un rendu assez lisse à
votre goût ?�� ��On utilisera plt.clf() pour clear figure pour effacer le graphique avant le plot suivant

2 La méthode d’Euler pour la résolution des E.D (première
approche)

2.1 Une forme très générale pour les E.D. du premier ordre normalisées

On peut écrire une E.D. du premier ordre sous la forme générale

y′(x) = F (x, y(x)),

où F est une fonction de deux variables. Ceci est beaucoup plus général que les seules E.D.L. du premier
ordre que nous avons vues en cours. Pour une E.D.L. du premier ordre normalisée :

y′(x) = −a(x)y(x) + b(x)

définie sur un intervalle I, on peut l’écrire sous la forme précédente en posant F (x,u) = −a(x)u+b(x) pour
tout u ∈ R et tout x ∈ I.
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2.2 Le principe de la méthode d’Euler et test positif !

Cadre général : On fixe un problème de Cauchy :

y′(x) = F (x, y(x)), avec la C.I. y(x0) = y0

Autrement dit, on se donne la fonction F , et le couple (x0, y0).
Notre exemple : on prendra l’E.D. très simple y′(x) = x.y(x), pour la C.I. y(0) = 1. Autrement dit,

(x0, y0) = (0,1) et F ∶ (x,u) ↦ x.u.
Retour à la théorie générale : On suppose que la fonction F est telle qu’il y ait une et une seule

fonction solution à l’E.D. pour la condition initiale y(x0) = y0 (il y a des conditions pour cela, cf. cours de
2ème année).

Le principe de la méthode d’Euler est le suivant : sur un petit intervalle [x0, x0 + p] où p s’appelle le
pas, et p est pris petit, on va approcher la fonction solution y qu’on ne connâıt pas par la fonction affine
définissant la tangente au graphe de y, au point d’abscisse x0, autrement dit par z0 ∶ x↦ y0+y

′
(x0)(x−x0).

L’essentiel : on connâıt y′(x0) = F (x0, y0).
En notant M0 = (x0, y0), on considère alors le segment [M0,M1] sur le graphe de la fonction affine z0

où M1 = (x1, y1) est le point d’abscisse x1 = x0 + p.
Ensuite, au point M1 = (x1, y1) on considère le segment partant de M1 et de pente cette fois F (x1, y1).

1.
On poursuit ce segment jusqu’au point M2 d’abscisse x0 + 2p.
En itérant ce procédé, on obtient une courbe continue qui est une succession de segments [Mk,Mk+1]

avec Mk = (xk, yk), et dont on espère qu’elle n’est pas trop loin de la solution y de l’E.D.
Question 1 – Donner la formule de récurrence donnant yk+1 en fonction de yk et xk pour chaque k.
Remarquer que la formule obtenue revient seulement algébriquement, dans l’E.D., à remplacer la dérivée

y′(x) par un taux de variation !
Question 2 – Ecrire une fonction Python qui prend comme argument F,p,x0,y0,n où n est le nombre

de points qu’on veut tracer et tracer la solution approchée au pb. de Cauchy correspondant avec la méthode
d’Euler.

Question 3 – On la testera sur l’exemple donné ci-dessus, en traçant sur le même graphe la solution
≪ exacte ≫.

3 Trois exemples de problèmes de Cauchy ≪ difficiles ≫ :

3.1 Un pb de Cauchy mal posé :

On considère l’E.D. non linéaire : y′ = 2
√

∣y∣
On constate que la fonction nulle est bien solution, mais aussi pour tout a ∈ R la fonction y ∶ x ↦

⎧⎪⎪
⎨
⎪⎪⎩

0 si x ≤ a,

(x − a)2 si x ≥ a
.

a) tracer le graphe de ces fonctions définies par cas avec Python, pour a = 0,1,2,3.

b) Y-a-t-il unicité de la solution au pb. de Cauchy

⎧⎪⎪
⎨
⎪⎪⎩

y′(x) = 2
√

∣y(x)∣,

y(0) = 0
?

�� ��On dit que ce problème de Cauchy est ≪ mathématiquement mal posé ≫

c) Tracer les solutions obtenues par la méthode d’Euler pour cette E.D. avec la C.I. y(0) = 0 puis
avec y(0) = 0.1, y(0) = 0.01, y(0) = 0.001. Expliquer pourquoi on peut en déduire une sorte de
discontinuité du comportement numérique des solutions par rapport à la variation de la C.I.

3.2 Un problème mathématiquement bien posé, mais numériquement
mal posé

Définition (vague) On dit qu’un problème de Cauchy est numériquement bien posé si la continuité
de la solution par rapport à la donnée initiale est ≪ suffisamment bonne ≫ pour que la solution ne soit pas
perturbée par une erreur initiale ou des erreurs d’arrondi faibles.

Exemple : on considère le problème de Cauchy

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

y′(x) = 3y(x) − 1, x ∈ [0,10],

y(0) =
1

3

.

1. Cette pente est celle de la tangente au graphe de la solution de l’E.D. qui passerait par M1
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a) Y-a-t-il existence et unicité d’une solution à ce problème de Cauchy ? Si oui expliciter cette solution
y.

b) On remplace la C.I. y(0) = 1/3 par la C.I. ỹ(0) =
1

3
+ ε. Expliciter la solution ỹ correspondante.

c) Calculer la différence entre ỹ(10) et y(10). Commenter le résultat obtenu.

d) tracer y et ỹ pour ε = 10−5.

e) A partir de quelle valeur de ε peut-on considérer que ỹ approche y à 10−1 près sur [0,10] ?

3.3 Un problème de pas

On considère le problème de Cauchy

⎧⎪⎪
⎨
⎪⎪⎩

y′(x) = −150y(x) + 30, x ∈ [0,1],

y(0) = 1/5.

a) Calculer la solution exacte de ce problème de Cauchy. Calculer la solution ỹ au même problème de

Cauchy où l’on remplace la C.I. par ỹ(0) =
1

5
+ ε.

b) Justifier que ∀x ∈ [0,1], ∣y(x) − ỹ(x)∣ ≤ ε et donc que le problème de Cauchy est numériquement
bien posé au sens du paragraphe précédent.

c) Tester numériquement la résolution du problème de Cauchy

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

y′(x) = −150y(x) + 30, x ∈ [0,1],

y(0) =
1

5
+ ε

avec ε = 0.1 et un pas p = 1/50. Que constatez vous ? Expliciter notamment la valeur de y(1)
trouvée.

d) Explication du phénomène précédent : comme à la question précédente, on résout le problème de

Cauchy

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

y′(x) = −150y(x) + 30, x ∈ [0,1],

y(0) =
1

5
+ ε.

avec la méthode d’Euler à pas constant p. On note

y0 =
1

5
+ ε et yn la n-ième valeur obtenue par cette méthode.

Montrer que yn −
1

5
= (1 − 150p)n (y0 −

1

5
).

Retrouver alors l’observation faite à la question précédente pour p = 1/50.

En déduire quelle valeur du pas on doit prendre pour ∣yn∣ ne tende pas vers l’infini avec n.

4 Bonus pour ceux qui ont fini avant

a) Pour le problème de Cauchy linéaire d’ordre 1 :

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

y(1) = 1,

y′(x) = 3
y(x)

x
−

5

x3

tracer la solution obtenue par

la méthode d’Euler sur [1,5] avec un pas de 0.1. Tracer sur la même courbe la solution exacte. Expliquer

pourquoi les solutions s’écartent si vite, grâce à la formule donnant toutes les solutions de y′(x) = 3
y(x)

x
−

5

x3

(sans C.I. prescrite).
Quel est le phénomène en cause parmi les trois cités au paragraphe précédents ? (Mathématiquement

mal posé, numériquement mal posé, ou bien mal conditionné).

b) On considère à présent le problème de Cauchy linéaire d’ordre 1 :

⎧⎪⎪
⎨
⎪⎪⎩

y(0) = 0,

y′(x) = 100(sin(x) − y(x))

dont la solution est y ∶ x↦
1

10001
(−100 cos(x) + 10000 sin(x) + 100 exp(−100x)).

(i) Tracer sur la même courbe cette solution exacte y et la solution obtenue par la méthode d’Euler
avec un pas de 0,02 sur l’intervalle [0,10].

(ii) Même question avec un pas de 0,0201 : puis un pas de 0,0202 joli non ? Commentez !
(iii) Comprendre ce phénomène mathématiquement.
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