
Solutions pour le TP 6 : écriture en base deux (partie 1)

1 Ecriture en base deux

Question 1 :�

�

�

�
Bien comprendre comment on fabrique la boucle : à chaque étape, on prend le reste de la
division euclidienne de n par 2, qu’on doit stocker dans une liste, et on remplace n par n//2.
Une fois qu’on a compris cela, on a compris la boucle ≪ en régime de croisière ≫, il ne reste
plus qu’à initialiser et mettre la condition d’arrêt.

Ecriture Base 2 en commençant par les poids faibles

def base2_poids_faible(n):

liste=[]

if n==0:

liste=[0] # Cas à mettre à part car n’entre pas dans la boucle qui suit

else :

while (n>0):

a=n%2

liste=[a]+liste # on rajoute a du bon côté...

n=n//2 # quotient de la div. eucl.

return liste

Question 2 :
Ce que j’ai vu parfois :

def puissance2inf1(n):

if n==0:

return 0

else:

i=0

while 2**i <n:

i=i+1

if 2**i==n:

return i

else :

return i-1

Ce code illustre bien la différence entre ce qui se passe si notre nombre est ≪ pile ≫ une puissance
de 2 ou pas. Mais on peut éviter les deux cas à la fin, avec un test 2**i<=n plus malin (beaucoup
vu aussi) :

def puissance2inf2(n):

if n==0:

return 0

else:

i=0

while 2**i <=n:

i+=1

return i-1 # rattrapage final...�
�

�
�

Informatiquement, les deux codes précédents ont un gros défaut : le calcul de 2**i à chaque
étape. Il est préférable de créer un accumulateur qui est multiplié par 2 à chaque étape. C’est
ce qu’on fait dans la v.3 ci-dessous.

1

def puissance2inf3(n):

if n==0:

return 0

else:

i=0

acc=1

while acc <=n:

i=i+1

acc=2*acc

return i-1

�� ��On peut aussi penser le problème en sens inverse et ≪ éviter le rattrapage final ≫ avec le −1.

def puissance2inf4(n):

r=0

while n>1:

r = r+1

n = n//2

return r

Explication : cette fois on pense au résultat du puissance2inf comme au nombre de fois qu’on
peut diviser n par 2 avant de tomber sur 0.

Question 3 :
Une solution souvent écrite :

def poids_fort(n):

#création d’une liste auxiliaire avec la bonne longueur

if n==0:

liste=[0]

else:

r=puissance2inf(n)

liste=[1]+[0]*r

l=r+1 # la longueur de la liste

on a créé une liste du bon format, on va continuer à la remplir

n=n-2**r #

while n!=0:

r=puissance2inf(n)

liste[l-1-r]=1

n=n-2**r

return liste

Remarque 1 L’algo. des poids forts, au départ plus intuitif pour un humain est : plus difficile
à programmer, et surtout plus lent (facteur 5 pour un test avec time). On peut bien sûr essayer de
l’optimiser un peu. Par exemple le n=n-2**r est très mauvais : on recalcule 2**r. Pour éviter cela,
on pourrait modifier puissance2inf pour lui faire renvoyer non seulement l’exposant r, mais la
valeur de 2r, puisque il est facile de la faire calculer à moindre coût par cette fonction : inutile de
la calculer deux fois. Mais même ainsi l’algo. reste plus lent. La division euclidienne est une arme
très efficace !

2

