Solutions pour le TP 6 : écriture en base deux (partie 1)

1 Ecriture en base deux

Question 1 :

ien comprendre comment on fabrique la boucle : a chaque étape, on prend le reste de la
division euclidienne de n par 2, qu’on doit stocker dans une liste, et on remplace n par n//2.
Une fois qu’on a compris cela, on a compris la boucle < en régime de croisiére », il ne reste
lus qu’a initialiser et mettre la condition d’arrét.

Ecriture Base 2 en commengant par les poids faibles
def base2_poids_faible(n):
liste=[]
if n==0:
liste=[0] # Cas a mettre a part car n’entre pas dans la boucle qui suit
else :
while (n>0):
a=n2
liste=[al+liste # on rajoute a du bon cdté...
n=n//2 # quotient de la div. eucl.
return liste

Question 2 :
Ce que j’ai vu parfois :

def puissance2infl(n):
if n==0:
return O
else:
i=0
while 2%*i <n:
i=i+1
if 2%x*i==n:
return i
else :
return i-1

Ce code illustre bien la différence entre ce qui se passe si notre nombre est « pile » une puissance
de 2 ou pas. Mais on peut éviter les deux cas & la fin, avec un test 2**i<=n plus malin (beaucoup

vu aussi) :

def puissance2inf2(n):

if n==0:
return O
else:
i=0
while 2%*i <=n:

i+=1
return i-1 # rattrapage final...

Informatiquement, les deux codes précédents ont un gros défaut : le calcul de 2**i a chaque
étape. 1l est préférable de créer un accumulateur qui est multiplié par 2 a chaque étape. C’est
ce qu’on fait dans la v.3 ci-dessous.

def puissance2inf3(n):
if n==0:
return O
else:
i=0
acc=1
while acc <=n:
i=i+1
acc=2%*acc
return i-1

[On peut aussi penser le probleme en sens inverse et < éviter le rattrapage final » avec le —1.]

def puissance2inf4(n):

r=0

while n>1:
r = r+l
n =n//2

return r

Explication : cette fois on pense au résultat du puissance2inf comme au nombre de fois qu’on
peut diviser n par 2 avant de tomber sur 0.

Question 3 :

Une solution souvent écrite :

def poids_fort(n):
#création d’une liste auxiliaire avec la bonne longueur
if n==0:
liste=[0]
else:
r=puissance2inf (n)
liste=[1]+[0]*r
1=r+1 # la longueur de la liste
on a créé une liste du bon format, on va continuer & la remplir
n=n-2**r #
while n!=0:
r=puissance2inf (n)
liste[1-1-r]=1
n=n-2%*r
return liste

Remarque 1 L’algo. des poids forts, au départ plus intuitif pour un humain est : plus difficile
& programmer, et surtout plus lent (facteur 5 pour un test avec time). On peut bien siir essayer de
I’optimiser un peu. Par exemple le n=n-2**r est trés mauvais : on recalcule 2x*xr. Pour éviter cela,
on pourrait modifier puissance2inf pour lui faire renvoyer non seulement I’exposant r, mais la
valeur de 2", puisque il est facile de la faire calculer & moindre colt par cette fonction : inutile de
la calculer deux fois. Mais méme ainsi ’algo. reste plus lent. La division euclidienne est une arme
tres efficace!

