
Chapitre 7 : Eléments d’analyse d’algorithmes

Table des matières

1 Terminaison et correction : illustrations sur des algorithmes d’arithmétiques 1
1.1 Apprentissage de l’analyse d’un algorithme : division euclidienne 1
1.2 L’algorithme d’Euclide pour le p.g.c.d. 3
1.3 La version soustractive de l’algorithme d’Euclide . 3

2 Introduction aux problèmes de coût d’algorithme : complexité 4
2.1 Un concept mathématique important : la notation O() 4
2.2 Illustrations simples . 4
2.3 Illustration sur le problème de l’évaluation d’un polynôme 5
2.4 Exemples d’algorithmes déjà rencontrés à coût logarithmique 5

2.4.1 L’exponentiation rapide . 5
2.4.2 La recherche dichotomique . 6
2.4.3 Cas de l’algorithme d’Euclide . 6

1 Terminaison et correction : illustrations sur des algorithmes
d’arithmétiques

1.1 Apprentissage de l’analyse d’un algorithme : division euclidienne

a) Remarque : une des difficultés de lecture d’un algorithme en informatique par rapport
aux mathématiques est qu’au cours du déroulement d’un algorithme, une variable peut
être réaffectée et prendre successivement différentes valeurs. En info., on peut penser à la
variable comme à un contenant et à la valeur comme un contenu.�

�
	Convention : Dans ces notes, on notera x un nom de variable informatique et x la valeur

(ou xk les valeurs successives) stockée(s) dans la variable qui s’appelle x.

Cette difficulté est aussi un avantage en terme de concision... quand on a bien compris...
comme on espère le montrer ci-dessous.

b) Un algorithme pour obtenir le reste de la division euclidienne On se donne deux
entiers a et b avec b > 0. Le résultat de la division euclidienne est le couple (q, r) tel que
a = bq+r et 0 ≤ r < b. Ici, on se limite d’abord à la recherche du reste : pour cela on va utiliser
seulement deux variables informatiques a et b. Au départ dans a et b, il y a les valeurs a et
b pour lesquelles on veut calculer la division euclidienne, mais l’algorithme modifie la valeur
de la variable informatique a et on va montrer qu’à la fin, dans a il y a le reste r que l’on
cherche.

Voici l’algo. écrit en Python où les valeurs de a et b seront donc rentrées comme arguments
d’une fonction appelée reste, volontairement non documentée :

def reste(a,b):

while (a<0) or (a>=b):

if a<0:

a=a+b

if a>=b:

a=a-b

return a�

�

�

�

Comment juger de la validité de cet algorithme ? Deux problèmes bien distincts :
● terminaison : on doit être sûr que l’algorithme s’arrête au bout d’un nombre fini

d’étapes,
● correction de l’algo. : on doit être sûr que l’algorithme fait ce qu’on veut, donc ici que

la valeur renvoyée est bien celle du reste.

1

c) Le problème de la terminaison :

Pour étudier l’algorithme on note a0 = a, et ak la valeur de la variable informatique a après
la k-ième étape.

(M1) ici : on se place dans chacun des deux cas des if et on fait une analyse semblable à
celle de la dém. mathématique.
● Si a0 = a ≥ b, alors a1 = a0 − b et si on prend k le maximum des entiers tels que a0 −kb ≥ b

alors a0−(k+1)b < b et a0−(k+1)b ≥ 0 (idem cours de maths). Donc l’algorithme s’arrête
après la (k + 1)-ième étape.

● Si a0 < 0, alors a1 = a0 + b et si on prend k le maximum des entiers les a0 +kb < 0, on sait
que a0 + (k + 1)b ≥ 0 et a0 + (k + 1)b < b (solution du cas laissé en exercice dans le cours
de maths).

(M2) avec un compteur qui diminue strictement : variant de boucle

�
�

�
�

● Souvent on montre qu’un algorithme s’arrête en montrant qu’un certain nombre diminue
strictement à chaque test de la boucle while. Ce nombre est appelé en info. un variant.
Souvent ce nombre est un entier naturel et une suite d’entiers naturels ne peut pas décrôıtre
strictement indéfiniment !

Ici par exemple : on peut voir qu’après chaque étape de l’algorithme la distance entre a et
le centre de l’intervalle [0, b] diminue strictement. Cette distance vaut abs(a-b/2) ; pour
éviter la fraction on peut considérer le double : abs(2a-b).

d) Le problème de la correction :

�

�
	Pour vérifier la correction d’un algorithme, on exhibe souvent des invariants c’est-à-dire des

objets qui ne changent pas pendant toute l’exécution de l’algorithme.

Sur notre exemple : la correction se voit directement sur le raisonnement mathématique
fait au c) (M1) et la recherche d’un invariant n’est pas si évidente... elle le devient si on
regarde l’algorithme plus complet qui donne (q, r) comme on va le faire maintenant.

e) L’algorithme complet de division euclidienne, et l’invariant de boucle

On se donne toujours des valeurs initiales (a, b). On pourrait n’utiliser que trois variables
informatiques a,b,q pour définir la fonction Python suivante, néanmoins, pour plus de
lisibilité, on va créer une quatrième variable r

def quo_reste(a,b):

"""renvoie le quotient et le reste de la div. eucl. de a par b"""

q=0

r=a # on aurait pu travailler avec a directement

while (r<0) or (r>=b):

if r<0:

r=r+b

q=q-1

if r>=b:

r=r-b

q=q+1

return q,r

Comme dans l’algo. précédent, la var. b n’est pas modifiée, et garde toujours la valeur initiale
b, ici a n’est pas modifiée non plus, alors que la variable locale r prend comme valeur finale
la valeur du reste comme on l’ a montré plus haut. La variable locale q est initialisée à 0 et
à la fin la fonction retourne la valeur finale de q dont on va montrer que c’est la valeur q du
quotient de la division euclidienne de a par b.�� ��Ici la valeur de bq+r est un invariant de la boucle while

2

En effet : à chaque étape on transforme bq+r en b(q-1)+(r+b) ou bien en b(q+1)+(r-b).

Quel intérêt d’un tel invariant ? A l’initialisation l’égalité bq+r==a est vraie avec les
valeurs : b × 0 + a = a. Donc à l’arrêt de l’algorithme, comme a et b n’ont pas changé de
valeur et comme on a déjà vu qu’à la fin de l’algo. r contenait bien la valeur voulue pour le
reste de la div. euclidienne, la variable q contient bien la valeur q telle que a = bq + r.

1.2 L’algorithme d’Euclide pour le p.g.c.d.

a) Description mathématique (donnée dans le cours de maths) : on se donne deux nombres
(a, b) et on définit une suite finie strictement décroissante d’entiers naturels (rk)k∈⟦0,N⟧ par
r0 = a, r1 = b et pour tout k ≥ 1, tant que rk ≠ 0, on définit rk+1 comme le reste de la division
euclidienne de rk−1 par rk.

La terminaison de l’algorithme est claire : la suite (rk) est une suite d’entiers naturels
strictement décroissante jusqu’à 0. Par déf. rN est le dernier reste non nul.

b) Algorithme informatique :�

�
	Maths : La suite (rk) est une suite réc. d’ordre 2 : rk+1 est défini à partir de rk et rk−1.

Traduction en info. : on a besoin d’une boucle qui modifie deux variables.

En Python en utilisant l’opérateur % pour le reste de la div. eucl. :

def Euclide(a,b):

b=abs(b)# pour se ramener à un b positif, ce qui ne change pas le pgcd

while b>0:

a,b=b,a%b

return a

Remarque : Dans un langage qui ne permet pas l’affectation en couple, on aura besoin
d’une variable locale tampon pour faire l’échange.

c) La correction de l’algorithme : pourquoi l’algo. renvoie-t-il pgcd(a,b) ?

La justification a été donnée en cours de maths, et en fait, sans le dire, on a introduit un :�� ��Invariant de boucle : à chaque étape de la boucle le pgcd(a,b) est inchangé.

Au départ il vaut pgcd(a, b) et à la fin, en notation maths, il vaut pgcd(rN ,0) avec rN le
dernier reste non nul.

Rappel : pour tout entier α, pgcd(α,0) = α.

1.3 La version soustractive de l’algorithme d’Euclide

Considérons l’algorithme implémenté dans la fonction Python suivante :

def EuclideS(a,b):

"""calcul du pgcd par la méthode des soustractions successives"""

a=abs(a)

b=abs(b)

while (a!=0) and (b!=0):

if a<=b:

b=b-a

elif b<a:

a=a-b

if a==0:

return b

if b==0:

return a

Analysons cet algorithme pour le comprendre du point de vue de la terminaison et de la
correction. On entre dans la fonction des valeurs a et b pour les variables a et b.

3

a) Terminaison : La fonction prend en entrée des nombres supposés entiers, mais se ramène
tout de suite à des nombre positifs. Notons (ak) et (bk) la suite des valeurs prises par les
variables informatiques a et b au fil de l’algorithme. A chaque étape de l’algorithme, tant
que min(ak, bk) ≠ 0, on a : ak+1+bk+1 = (ak +bk)−min(ak, bk). Ainsi 0 ≤ ak+1+bk+1 < ak +bk.

La suite (ak + bk) est bien une suite d’entiers naturels strictement décroissante tant que la
boucle while se répète. Donc la boucle while s’arrête.

b) Correction : pourquoi l’algorithme est-il correct, c’est-à-dire pourquoi fait-il ce qui est
annoncé dans la documentation ? Comme précédemment, on exhibe un invariant de boucle.�� ��Ici encore la valeur de pgcd(a,b) est un invariant de la boucle.

En effet, pour tout (u, v) ∈ Z2 pgcd(u, v) =pgcd(u − v, v) =pgcd(u, v − u).
Or au départ de l’algorithme pgcd(a,b) vaut pgcd(a, b) et à la fin de la l’algo l’une des
deux variables vaut 0 et par exemple si b=0, pgcd(a,0)=a donc à la fin de l’algo. la variable
a contient le pgcd cherché.

2 Introduction aux problèmes de coût d’algorithme : com-
plexité

Une fois qu’on a étudié la terminaison et la correction d’un algorithme, on peut aussi étudier
son coût (on dit aussi la complexité) i.e. en combien d’étapes il se termine et le nombre d’opérations
élémentaires qu’il nécessite.

2.1 Un concept mathématique important : la notation O()
a) Définition (maths) Si (un) et (vn) sont deux suites réelles, on dit que un = O(vn) (sous-

entendu quand n → +∞) ssi il existe un rang n0 ∈ N et une constante A > 0 tels que :
∀n ≥ n0, ∣un∣ ≤ A∣vn∣.

Terminologie : Si un = O(vn), on dit que la suite (un) est dominée par la suite (vn).

Remarque : Si un = o(vn) alors a fortiori un = O(vn) mais la récip. est fausse.

Exemple : Si un ≤ 4n2 + 120n + 14566 A.P.C.R. alors un = O(n2).
D’une manière générale, si vn ∼ wn et un = O(vn) alors un = O(wn).
Dans l’exemple précédente, 4n2 + 120n + 14566 ∼ 4n2 d’où la conclusion un = O(n2).

b) Intérêt en informatique : Souvent (mais pas toujours !) en informatique, ces constantes
(comme le 4 devant le 4n2 ci-dessus-) , n’ont pas beaucoup d’intérêt.

Bien sûr on pourrait dire qu’un algo. en O(n) est aussi en O(n2) mais on essaiera toujours
de donner la réponse la plus précise, la plus pertinente : il ne sert à rien de dire à quelqu’un
qu’on va venir le voir dans moins d’un mois si on sait qu’on va venir demain..

2.2 Illustrations simples

a) Quelle est la complexité des fonctions suivantes, en terme de nombres de multiplications * ?
Formuler aussi le résultat avec la notation O().

def table1(n):

for i in range(11):

print(i*n)

def table2(n):

for i in range(n):

print(i*n)

def table3(n):

for i in range(n):

4

for j in range(n):

print(i*j,end=" ")

print()

b) Mêmes questions : en terme de nombres d’additions +

def sommeSimple(L):

S=0

for i in range(len(L)):

S=S+L[i]

return S

def sommeDouble(n):

S=0

for i in range(1,n+1):

for j in range(i,n+1):

S=S+i+j

return S

Essayons sommeDouble1(10000). Commentaire ?

2.3 Illustration sur le problème de l’évaluation d’un polynôme

Pour se donner une fonction polynomiale f ∶ x↦
n−1

∑
k=0

akx
k, il suffit de se donner la liste des ak.

On considère donc notre fonction polynomiale donnée par une telle liste L.

a) La méthode la plus näıve pour évaluer f en un point x est alors certainement :

def evaluer(L,x):

S=0

for i in range(len(L)):

S=S+L[i]*x**i

return S

Quelle est la complexité de cette fonction, par rapport à la taille n=len(L) des données ?

b) Méthode incontournable du point de vue informatique :�� ��ne pas recalculer les xi à chaque fois, mais réaffecter en multipliant par x 1

def evaluer2(L,x):

S=0

monome=1

for i in range(len(L)):

S=S+L[i]*monome # A l’étape i monôme vaut x**i

monome=monome*x # là il vaut x**(i+1)

return S

Quelle est la complexité de cette fonction, par rapport à la taille n=len(L) des données ?

2.4 Exemples d’algorithmes déjà rencontrés à coût logarithmique

2.4.1 L’exponentiation rapide

Complexité de l’exponentiation naive ? Complexité de l’exp. rapide ?

1. pour chasser cette mauvaise habitude !

5

2.4.2 La recherche dichotomique

Cf. T.P. et C.R. du T.P. en question.�

�
	Les algorithmiques où l’on divise la taille de l’entrée par un certain facteur à chaque étape,

ici par deux, sont logarithmiques

2.4.3 Cas de l’algorithme d’Euclide

Exercice à faire : On considère deux entiers (a, b) ∈ N2, avec a > b, on note a = bq + r la
division euclidienne de a par b. On note r0 = a, r1 = b et on réécrit cette division euclidienne
r0 = r1q1 + r2 : étape 1 de l’algo. d’Euclide.

Pour tout k ≥ 1, tant que rk ≠ 0, on note rk+1 le reste de la division euclidienne de rk−1 par rk,
qu’on écrit rk−1 = qkrk + rk+1. On note, comme dans le cours, rN le dernier reste non nul, de sorte
que la dernière étape de l’algorithme d’Euclide s’écrit : rN−1 = qNrN + 0.

Avec ces notations l’algorithme a exactement N étapes (numérotées par les qi).

a) Montrer que dans la division euclidienne a = bq + r, on a br ≤ 1

2
ab et que pour tout k,

rk+1rk ≤
1

2
rkrk−1.

Autrement dit, le produit “dividende-diviseur” est au moins divisé par 2 à chaque étape de
l’algo. d’Euclide

b) En déduire que le nombre N d’étapes de l’algorithme d’Euclide appliqué à a et b est majoré
par log2(a) + log2(b).

6

