Chapitre 7 : Eléments d’analyse d’algorithmes

Table des matiéres

1 Terminaison et correction : illustrations sur des algorithmes d’arithmétiques 1
1.1 Apprentissage de ’analyse d’un algorithme : division euclidienne 1
1.2 L’algorithme d’Euclide pour le p.g.c.d. o ..o oo 3
1.3 La version soustractive de l'algorithme d’Euclide 3

2 Introduction aux problémes de coit d’algorithme : complexité 4
2.1 Un concept mathématique important : la notation O() 4
2.2 Mlustrations simples 4
2.3 Tlustration sur le probleme de ’évaluation d’un polynéme 5
2.4 Exemples d’algorithmes déja rencontrés a cotit logarithmique)

2.4.1 L’exponentiation rapide 5
2.4.2 La recherche dichotomique 6
2.4.3 Cas de lalgorithme d’Euclide 6

1 Terminaison et correction : illustrations sur des algorithmes
d’arithmétiques

1.1 Apprentissage de ’analyse d’un algorithme : division euclidienne

a) Remarque : une des difficultés de lecture d’un algorithme en informatique par rapport
aux mathématiques est qu’au cours du déroulement d’'un algorithme, une variable peut
étre réaffectée et prendre successivement différentes valeurs. En info., on peut penser a la
variable comme a un contenant et a la valeur comme un contenu.

Convention : Dans ces notes, on notera x un nom de variable informatique et x la valeur
(ou xy, les valeurs successives) stockée(s) dans la variable qui s’appelle x.

Cette difficulté est aussi un avantage en terme de concision... quand on a bien compris...
comme on espere le montrer ci-dessous.

b) Un algorithme pour obtenir le reste de la division euclidienne On se donne deux
entiers a et b avec b > 0. Le résultat de la division euclidienne est le couple (g,r) tel que
a =bg+r et 0 <r <b.Ici, on se limite d’abord & la recherche du reste : pour cela on va utiliser
seulement deux variables informatiques a et b. Au départ dans a et b, il y a les valeurs a et
b pour lesquelles on veut calculer la division euclidienne, mais I’algorithme modifie la valeur
de la variable informatique a et on va montrer qu’a la fin, dans a il y a le reste r que 'on
cherche.

Voici l'algo. écrit en PYTHON ou les valeurs de a et b seront donc rentrées comme arguments
d’une fonction appelée reste, volontairement non documentée :

def reste(a,b):
while (a<0) or (a>=b):
if a<o0:
a=a+b
if a>=b:
a=a-b
return a

omment juger de la validité de cet algorithme ? Deux problémes bien distincts :
e terminaison : on doit étre sur que l'algorithme s’arréte au bout d’un nombre fini
d’étapes,
e correction de l’algo. : on doit étre str que l'algorithme fait ce qu’on veut, donc ici que
la valeur renvoyée est bien celle du reste.

¢) Le probléme de la terminaison :
Pour étudier ’algorithme on note ag = a, et ax la valeur de la variable informatique a apres
la k-ieme étape.
(M1) ici : on se place dans chacun des deux cas des if et on fait une analyse semblable &
celle de la dém. mathématique.

e Siap=a2>b,alors a; =ay—b et si on prend k le maximum des entiers tels que ag—kb>b
alors ag—(k+1)b<bet ap—(k+1)b> 0 (idem cours de maths). Donc 'algorithme s’arréte
apres la (k + 1)-ieme étape.

e Siag <0, alors a; =ag+b et si on prend k le maximum des entiers les ag + kb < 0, on sait
que ag+ (k+1)b>0 et ag + (k+1)b< b (solution du cas laissé en exercice dans le cours
de maths).

(M2) avec un compteur qui diminue strictement : variant de boucle

e Souvent on montre qu’un algorithme s’arréte en montrant qu’un certain nombre diminue
strictement & chaque test de la boucle while. Ce nombre est appelé en info. un variant.
Souvent ce nombre est un entier naturel et une suite d’entiers naturels ne peut pas décroitre
trictement indéfiniment !

Ici par exemple : on peut voir qu’apres chaque étape de 'algorithme la distance entre a et
le centre de l'intervalle [0,b] diminue strictement. Cette distance vaut abs(a-b/2) ; pour
éviter la fraction on peut considérer le double : abs(2a-b).

d) Le probléme de la correction :

Pour vérifier la correction d’'un algorithme, on exhibe souvent des invariants c’est-a-dire de
objets qui ne changent pas pendant toute ’exécution de 'algorithme.

)

Sur notre exemple : la correction se voit directement sur le raisonnement mathématique
fait au ¢) (M1) et la recherche d’un invariant n’est pas si évidente... elle le devient si on
regarde ’algorithme plus complet qui donne (g,r) comme on va le faire maintenant.

e) L’algorithme complet de division euclidienne, et ’invariant de boucle
On se donne toujours des valeurs initiales (a,b). On pourrait n’utiliser que trois variables
informatiques a,b,q pour définir la fonction PYTHON suivante, néanmoins, pour plus de
lisibilité, on va créer une quatrieme variable r

def quo_reste(a,b):
"""renvoie le quotient et le reste de la div. eucl. de a par b"""
q=0
r=a # on aurait pu travailler avec a directement
while (r<0) or (r>=b):
if r<0:
r=r+b
q=q-1
if r>=b:
r=r-b
q=q+1
return q,r
Comme dans ’algo. précédent, la var. b n’est pas modifiée, et garde toujours la valeur initiale
b, ici a n’est pas modifiée non plus, alors que la variable locale r prend comme valeur finale
la valeur du reste comme on 1’ a montré plus haut. La variable locale q est initialisée a 0 et
a la fin la fonction retourne la valeur finale de q dont on va montrer que c’est la valeur ¢ du
quotient de la division euclidienne de a par b.

[Ici la valeur de bg+r est un invariant de la boucle while]

En effet : a chaque étape on transforme bg+r en b(q-1)+(r+b) ou bien en b(q+1)+(r-b).
Quel intérét d’un tel invariant 7 A linitialisation 'égalité bg+r==a est vraie avec les
valeurs : b x 0 + a = a. Donc a P'arrét de I'algorithme, comme a et b n’ont pas changé de
valeur et comme on a déja vu qu’a la fin de ’algo. r contenait bien la valeur voulue pour le
reste de la div. euclidienne, la variable q contient bien la valeur g telle que a = bg + r.

1.2 L’algorithme d’Euclide pour le p.g.c.d.

a) Description mathématique (donnée dans le cours de maths) : on se donne deux nombres
(a,b) et on définit une suite finie strictement décroissante d’entiers naturels (rx)xefo,n] Par
ro =a, r1 = b et pour tout k > 1, tant que i # 0, on définit r,,; comme le reste de la division
euclidienne de r,_q par ry.

La terminaison de ’algorithme est claire : la suite () est une suite d’entiers naturels
strictement décroissante jusqu’a 0. Par déf. ry est le dernier reste non nul.

b) Algorithme informatique :

Maths : La suite (1) est une suite réc. d’ordre 2 : rg,q est défini & partir de 74 et rg_1.
Traduction en info. : on a besoin d’une boucle qui modifie deuz variables.

En PYTHON en utilisant 'opérateur % pour le reste de la div. eucl. :

def Euclide(a,b):
b=abs(b)# pour se ramener & un b positif, ce qui ne change pas le pgcd
while b>0:
a,b=b,alb
return a
Remarque : Dans un langage qui ne permet pas l'affectation en couple, on aura besoin
d’une variable locale tampon pour faire ’échange.
¢) La correction de l’algorithme : pourquoi l’algo. renvoie-t-il pgcd(a,b)?
La justification a été donnée en cours de maths, et en fait, sans le dire, on a introduit un :

[Invariant de boucle : a chaque étape de la boucle le pged(a,b) est inchangé]

Au départ il vaut pged(a,bd) et a la fin, en notation maths, il vaut pged(ry,0) avec ry le
dernier reste non nul.

Rappel : pour tout entier «, pged(a,0) = a.

1.3 La version soustractive de 1’algorithme d’Euclide
Considérons 'algorithme implémenté dans la fonction PYTHON suivante :

def EuclideS(a,b):
"""calcul du pgcd par la méthode des soustractions successives"""

a=abs(a)
b=abs (b)
while (a!=0) and (b!=0):
if a<=b:
b=b-a
elif b<a:
a=a-b
if a==0:
return b
if b==0:
return a

Analysons cet algorithme pour le comprendre du point de vue de la terminaison et de la
correction. On entre dans la fonction des valeurs a et b pour les variables a et b.

a)

Terminaison : La fonction prend en entrée des nombres supposés entiers, mais se ramene
tout de suite & des nombre positifs. Notons (ay) et (bg) la suite des valeurs prises par les
variables informatiques a et b au fil de I'algorithme. A chaque étape de lalgorithme, tant
que min(ag,bx) #0, on a : ags1 +bge1 = (ar +b) —min(ak, by). Ainsi 0 < agi1 +bgs1 < ag + by
La suite (ay + bx) est bien une suite d’entiers naturels strictement décroissante tant que la
boucle while se répete. Donc la boucle while s’arréte.

Correction : pourquoi l’algorithme est-il correct, c’est-a-dire pourquoi fait-il ce qui est
annoncé dans la documentation? Comme précédemment, on exhibe un invariant de boucle.

[Ici encore la valeur de pged(a,b) est un invariant de la boucle.]

En effet, pour tout (u,v) € Z? pged(u,v) =pged(u —v,v) =pged (u, v — u).

Or au départ de lalgorithme pged(a,b) vaut pged(a,bd) et a la fin de la Palgo 'une des
deux variables vaut 0 et par exemple si b=0, pged (a,0)=a donc a la fin de I’algo. la variable
a contient le pged cherché.

2 Introduction aux problémes de coiit d’algorithme : com-

plexité

Une fois qu’on a étudié la terminaison et la correction d’un algorithme, on peut aussi étudier
son coft (on dit aussi la complexité) i.e. en combien d’étapes il se termine et le nombre d’opérations
élémentaires qu’il nécessite.

2.1
a)

2.2
a)

Un concept mathématique important : la notation O()

Définition (maths) Si (u,) et (v,) sont deux suites réelles, on dit que u, = O(v,) (sous-
entendu quand n — +o0) ssi il existe un rang ng € N et une constante A > 0 tels que :
V' >ng, [un] < Alvy.

Terminologie : Si u, = O(v,), on dit que la suite (u,) est dominée par la suite (vy,).
Remarque : Si u, = o(v,) alors a fortiori u,, = O(v,) mais la récip. est fausse.

Exemple : Si u, <4n?+120n + 14566 A.P.C.R. alors u,, = O(n?).

D’une maniere générale, ’Si Up, ~ Wy, €t uy, = O(vy,) alors u, = O(wy,). ‘

Dans I'exemple précédente, 4n? + 120n + 14566 ~ 4n? d’ou la conclusion u,, = O(n?).

Intérét en informatique : Souvent (mais pas toujours!) en informatique, ces constantes
(comme le 4 devant le 4n? ci-dessus-) , n’ont pas beaucoup d’intérét.

Bien stir on pourrait dire qu'un algo. en O(n) est aussi en O(n?) mais on essaiera toujours
de donner la réponse la plus précise, la plus pertinente : il ne sert a rien de dire a quelqu’un
qu’on va venir le voir dans moins d’un mois si on sait qu’on va venir demain..

Illustrations simples

Quelle est la complexité des fonctions suivantes, en terme de nombres de multiplications * 7

Formuler aussi le résultat avec la notation O().

def tablel(n):
for i in range(11):

print (i*n)

def table2(n):
for i in range(n):

print (i*n)

def table3(n):
for i in range(n):

for j in range(n):
print(i*j,end=" ")
print ()

b) Mémes questions : en terme de nombres d’additions +

def sommeSimple(L):
S5=0
for i in range(len(L)):
S=s+L[i]
return S

def sommeDouble(n):
S5=0
for i in range(1l,n+1):
for j in range(i,n+1):
S=S+i+j
return S

Essayons sommeDoublel(10000). Commentaire ?

2.3 Illustration sur le probleme de I’évaluation d’un polynéme

n-1
Pour se donner une fonction polynomiale f : x Z apz”, il suffit de se donner la liste des ay.
k=0
On considere donc notre fonction polynomiale donnée par une telle liste L.

a) La méthode la plus naive pour évaluer f en un point x est alors certainement :

def evaluer(L,x):
S=0
for i in range(len(L)):
S=S+L [i]*x**i
return S

Quelle est la complexité de cette fonction, par rapport a la taille n=1en(L) des données?

b) Méthode incontournable du point de vue informatique :

Lne pas recalculer les ' & chaque fois, mais réaffecter en multipliant par x j 1

def evaluer2(L,x):
S=0
monome=1
for i in range(len(L)):
S=S+L[i]*monome # A 1’étape i mondme vaut x**i
monome=monome*x # 1a il vaut x**x(i+1)
return S

Quelle est la complexité de cette fonction, par rapport a la taille n=1en(L) des données?

2.4 Exemples d’algorithmes déja rencontrés a coiit logarithmique
2.4.1 L’exponentiation rapide

Complexité de ’exponentiation naive ? Complexité de I'exp. rapide ?

1. pour chasser cette mauvaise habitude!

2.4.2 La recherche dichotomique
Cf. T.P. et C.R. du T.P. en question.

Les algorithmiques ot 'on divise la taille de I’entrée par un certain facteur & chaque étape,
ici par deux, sont logarithmiques

2.4.3 Cas de I’algorithme d’Euclide

Exercice a faire : On consideére deux entiers (a,b) € N2, avec a > b, on note a = bg +r la
division euclidienne de a par b. On note g = a, 71 = b et on réécrit cette division euclidienne
ro =71q1 + 12 : étape 1 de 'algo. d’Euclide.

Pour tout k > 1, tant que r # 0, on note 75,1 le reste de la division euclidienne de r_y par 7y,
qu’on écrit ry_1 = quTk + rE+1. On note, comme dans le cours, ry le dernier reste non nul, de sorte
que la derniere étape de ’algorithme d’Euclide s’écrit : rny_1 = gnry + 0.

Avec ces notations 1’algorithme a exactement N étapes (numérotées par les g¢;).

a) Montrer que dans la division euclidienne a = bg + r, on a br < iab et que pour tout k,

Th+1Tk < STETk-1-
Autrement dit, le produit “dividende-diviseur” est au moins divisé par 2 a4 chaque étape de
l’algo. d’Euclide

b) En déduire que le nombre N d’étapes de I’algorithme d’Euclide appliqué & a et b est majoré
par log,(a) + log, (b).

