TP 6 : écriture en base deux et exponentiation rapide

1 Ecriture en base deux

On va écrire un algorithme itératif (boucle while) permettant d’obtenir I’écriture en base deux
d’un nombre entier n.
Deux méthodes sont possibles.

(M1) Des poids forts vers les poids faibles : Mettons qu’on veuille savoir comment s’écrit
54 en base deux. On commence par se demander entre quelles puissances de deux il est : ici 32 et
64. On sait alors quel est le premier chiffre (en partant de la gauche, celui qu’on appelle le chiffre
de poids fort) de son écriture en base deux : comme 32 = 25, 54 = 25 + (54 - 32) = 25 + 22. On fait
le méme travail pour 22, etc.

(M2) Des poids faibles vers les poids forts : L’idée de départ est que sin = b,.2"+---+b12+bg
alors en particulier n = 2B + by ol B est un entier et by € {0,1}. Donc by est le reste de la division
euclidienne de n par 2. Donc on sait calculer by, le dernier chiffre de ’écriture de n en base 2 (le
chiffre de poids le plus faible). On a bien stir by =  si n est pair et by =  si n est impair. Pour 54
ce chiffre fait donc

On peut ensuite appliquer la méme méthode au quotient B de cette division euclidienne. A
partir de I'écriture de départ, B = 5,27 +.-.b9.2 + b; et ceci permet d’obtenir b; etc...

Illustration sur un exemple :

24 = 2x12+0-bp =0,
12 = 2x6+0—->0b; =0,
= 2x3+0->02=0,
= 2x1+1->0b3=1,
1 = 2x0+1—=bs=1.

Question 1 : Implémenter un algorithme suivant la méthode (M2).
On notera base2PoidsFaibles la fonction correspondante, prenant un entier naturel n en
argument, et renvoyant la liste [by,b,—1,...,bp] de ses chiffres en base deux (dans cet ordre!).

Remarque : penser aux cas particuliers.

Question 2 : Ecrire une fonction puissance2inf qui pour chaque entier n > 1 renvoie le plus
grand entier r tel que 2" <n et renvoie 0 si n = 0.

Question 3 : En déduire I’écriture d’un algorithme suivant la méthode (M1) (plus compliquée).

2 L’algorithme d’exponentiation rapide

Le but de cet algorithme est de calculer la puissance N-ieme ¥ d’un nombre = qui peut étre
un entier ou un flottant, avec un minimum d’opérations.

L’intérét de cet algo. ne se limite pas aux entiers. Si on l'introduit ici, c’est qu’ensuite on
I’appliquera aussi dans les anneaux de congruences, ou il est encore plus efficace, et qu’on
s’en servira pour des problemes d’arithmétiques...

a) L’idée essentielle : Si N =ag +a12--- + a,2", écriture en base deux, avec a; € {0,1} alors :
N = % () (22)n,

Ensuite deux points de vue possibles, cela dépend si on connait déja ’écriture en base 2 de
N ou pas.



b)

lére méthode (des poids faibles vers les poids forts)

En lisant le développement en base deuz de droite a gauche si N = (ay...a0)[2] : c’est le
plus souvent comme cela que lalgorithme est présenté, car dans ce cas, on peut aussi obtenir
les chiffres successifs du développement en base 2 a chaque €tape par l'algorithme des poids
faibles déja vu plus haut : pas besoin d’avoir fait le calcul du dév. en base 2 avant !

Pour mettre en oeuvre l'algorithme on utilise trois variables qu’on va appeler res et aux
comme résultat et auxiliaire et la variable N qui au départ contient comme valeur I’exposant
N et qui va permettre a chaque étape de calculer le chiffre du développement en base 2 de
N.

De manieére pas completement formelle, a ’étape 7 :

e On stocke dans aux la valeur de m2i, obtenue comme carré de 22 obtenu & I’étape
précédente.

e En méme temps, on divise a chaque étape N par 2 pour connaitre le i-eme chiffre a; de
son écriture en base 2. i.e. on itere N =N//2 . Le a; est le reste de la division euclidienne
de N par 2.

e Enfin toujours a ’étape i , si a; = 1, on multiplie res par x
aux a l’étape i, sinon on ne change pas res.

2" Cest-a-dire la valeur de
Exercice a faire : implémenter cette idée d’algorithme en PYTHON.

Rappel ’algo. de dév. en base deux des poids faibles vers les poids forts illustré
sur un exple :

24 = 2x12+0-a0 =0,
12 = 2x6+0—->a; =0,
= 2x3+0-a2=0,
= 2x1+1-a3=1,
1 = 2x0+1-a4=1.

2éme méthode (des poids forts vers les poids faibles)

En lisant ’écriture en base 2 de gauche a droite : cette méthode évite 1'utilisation d’une
variable auxiliaire, mais nécessite d’avoir calculé le développement en base 2 de N : ce qui
n’est pas un gros probleme pratique en PYTHON, mais jouerait sur les questions de cotit.

L’idée astucieuse, qui est utile dans d’autres contextes (algorithme de Horner), est d’écrire :
o = (L (20)2anr) ) ) 2o

Par exemple avec 24 qui s’écrit 11000 en base 2 : 24 = (((2)%.2)?)?)?).

On lit donc Uécriture en base 2 de N de gauche a droite, on part de res:= 1 et a chaque
étape s’il y a un 1 dans le développement de N en base 2 on remplace res par (res*res) *x,
sinon on prend juste le carré i.e. on remplace res par (res*res).

Exercice a faire : implémenter cette idée d’algorithme en PYTHON

Montrer que si N s’écrit avec n+1 chiffres en base 2, alors cet algorithme permet de calculer

2™V avec au plus 2n multiplications.

Comparer la vitesse de vos fonctions avec celle de la fonction pow(x,N) de PYTHON qui
utilise ce méme algorithme d’exponentiation rapide.



'Suite du T.P. 6|

3 Une version du jeu de Nim

Une regle du jeu de Nim est la suivante. Des allumettes sont rangées en tas. Le nombre de tas
et le nombre d’allumettes dans chaque tas est arbitraire. Il y a deux joueurs, A et B. Le premier
joueur A prend un nombre quelconque d’allumettes (mais au moins une) dans UN tas; il peut ne
prendre qu’une seule allumette, ou autant qu’il souhaite, mais il ne doit toucher qu’un seul tas.
Le joueur B joue ensuite selon les mémes regles et les joueurs jouent a tour de role. Le joueur qui
prend la derniere allumette gagne la partie.

Définition : Nous appellerons configuration gagnante une configuration telle que si un joueur J
(A ou B) peut y parvenir par son coup, alors quelle que soit la fagon dont lautre joueur K (resp.
B ou A) joue apres, ce second joueur perdra.

Représentation du jeu : On choisit de se donner 1’état du jeu comme une liste ot chaque entrée
représente leffectif d’un tas. Par exemple [4,5,2] signifie qu’il y a trois tas, un avec 4 allumettes,
un autre avec 5 et un autre avec 2 (bien sir, I'ordre des tas ne compte pas). Un telle liste sera
appelée une configuration du jeu.

Exemple de configuration gagnante : Avec cette convention, on comprend que la configuration
[2,2] est une configuration gagnante. En effet, si A laisse cette configuration & B, alors B n’a que
deux possibilités. Si B prend une allumette d’un tas, alors A en prend une de lautre tas et on
arrive & [1,1] pour B et clairement A va gagner. Si B prend deux allumettes, alors A prend les
deux du tas restant. Dans tous les cas A gagne.

A titre d’exercice vérifiez que [1,2,3] est une configuration gagnante.

Codage en binaire et configurations <« & somme nulle » :

A chaque configuration de jeu, on va associer sa représentation binaire obtenue comme suit.
On écrit l'effectif de chaque tas en binaire en écrivant chaque effectif avec le nombre de chiffres en
binaire nécessaire pour représenter le plus grand effectif. Par exemple la configuration [1,2] a pour
représentation binaire [01,10] et [2,3,6,7] a pour représentation binaire [010,011,110,111].

Pour chaque configuration ¢ écrite en binaire on écrit les nombres les uns en dessous des
autres puis on calcule la somme (modulo 2) des chiffres colonne par colonne par exemple pour

010
011
[010,011,110,110], on écrit en tableau : 110
110
001

On note cette somme S(c) et la représentation en tableau ci-dessus sera appelée tableau de la
configuration ou chaque ligne représente un tas.

Pour c1=[11,10], on aura S(c1)=01. Pour ¢2=[10,10] on aura S(c2)=00.

Pour ¢3=[010,011,110,111], on aura S(c3)=000.

On a alors ’étonnant :

Théoréme : une configuration c est gagnante si, et seulement si, S(c) a tous ses chiffres égaux
a 0.

Démonstration du théoréme : elle est en deux parties.

e Si on modifie un tas d’une configuration a somme nulle, alors la configuration n’est plus a
somme nulle. En effet modifier un tas c’est modifier une ligne L; du tableau ci-dessus.

Dire la configuration est a somme nulle revient & dire que la somme de toutes les autres lignes
que la i-iéme est égale a la i-iéme donc changer la i-ieme supprime forcément cette propriété.

o Il est toujours possible, a partir d’une configuration a somme non nulle, de la transformer, en
modifiant seulement une ligne, en une configuration a somme nulle.

Question 1 : comment faire cela?

e Question 2 : pourquoi les deux points précédents permettent de conclure pour la démonstration
du théoréme ?



Question 3 : Travail informatique a faire : Ecrire une fonction Nim qui recoit une liste L
dont les entrées sont les effectifs initiaux des tas, en nombre quelconque, choisis par 'utilisateur.

La fonction va permettre a 'ordinateur et au joueur de jouer a tour de role.

L’ordinateur commence.

- Si la configuration n’est pas a somme nulle, il la transforme par la méthode que vous avez
trouvée a la question 2, en une configuration a somme nulle. Puis il demande & I’humain de jouer
et a chaque étape 'ordi refabrique une configuration a somme nulle et 'ordi est sir de gagner.

- Si la configuration est a somme nulle, 'ordinateur enléve juste une allumette et fait ainsi tant
qu’il n’hérite pas d’une situation a somme non nulle. Bien stir si le joueur humain sait calculer tout
cela il gagnera mais dés qu’il fait une erreur 'ordi gagnera.

Solution de la Question 1 expliquée sur ’exemple :
11010
10010
00110
00111
01001
On regarde le premier bit de S(c) ottil y a un 1 : ici c’est le second.
On regarde la premiere ligne du tableau ot ce bit vaut aussi 1. : ici c’est dans la premiére.
Dans cette ligne, on va modifier tous les bits qui sont & la méme place que les 1 dans S(c), je

les écris avec un étoile dessus Lq = 11016.

Et donc on remplace L; par L} = 10011.

L’important, c¢’est que comme on modifie le premier bit qui vaut 1 le nombre obtenu est inférieur,
donc cela correspond bien a enlever des allumettes.

Solution de la question 2 : le fait d’étre a somme nulle étant un invariant de la configuration
de jeu laissée & 'humain et le nombre d’allumettes étant strictement décroissant (c’est le variant),
va arriver le moment ou la configuration laissé a I’humain sera nulle : 'ordi gagne.



