
TP 6 : écriture en base deux et exponentiation rapide

1 Ecriture en base deux

On va écrire un algorithme itératif (boucle while) permettant d’obtenir l’écriture en base deux
d’un nombre entier n.

Deux méthodes sont possibles.

(M1) Des poids forts vers les poids faibles : Mettons qu’on veuille savoir comment s’écrit
54 en base deux. On commence par se demander entre quelles puissances de deux il est : ici 32 et
64. On sait alors quel est le premier chiffre (en partant de la gauche, celui qu’on appelle le chiffre
de poids fort) de son écriture en base deux : comme 32 = 25, 54 = 25 + (54 − 32) = 25 + 22. On fait
le même travail pour 22, etc.

(M2) Des poids faibles vers les poids forts : L’idée de départ est que si n = br2r+⋯+b12+b0
alors en particulier n = 2B + b0 où B est un entier et b0 ∈ {0,1}. Donc b0 est le reste de la division
euclidienne de n par 2. Donc on sait calculer b0, le dernier chiffre de l’écriture de n en base 2 (le
chiffre de poids le plus faible). On a bien sûr b0 = si n est pair et b0 = si n est impair. Pour 54
ce chiffre fait donc .

On peut ensuite appliquer la même méthode au quotient B de cette division euclidienne. A
partir de l’écriture de départ, B = br2r−1 +⋯b2.2 + b1 et ceci permet d’obtenir b1 etc...

Illustration sur un exemple :

24 = 2 × 12 + 0→ b0 = 0,

12 = 2 × 6 + 0→ b1 = 0,

6 = 2 × 3 + 0→ b2 = 0,

3 = 2 × 1 + 1→ b3 = 1,

1 = 2 × 0 + 1→ b4 = 1.

Question 1 : Implémenter un algorithme suivant la méthode (M2).
On notera base2PoidsFaibles la fonction correspondante, prenant un entier naturel n en

argument, et renvoyant la liste [br, br−1, . . . , b0] de ses chiffres en base deux (dans cet ordre !).

Remarque : penser aux cas particuliers.

Question 2 : Ecrire une fonction puissance2inf qui pour chaque entier n ≥ 1 renvoie le plus
grand entier r tel que 2r ≤ n et renvoie 0 si n = 0.

Question 3 : En déduire l’écriture d’un algorithme suivant la méthode (M1) (plus compliquée).

2 L’algorithme d’exponentiation rapide

Le but de cet algorithme est de calculer la puissance N -ième xN d’un nombre x qui peut être
un entier ou un flottant, avec un minimum d’opérations.�

�
�
�

L’intérêt de cet algo. ne se limite pas aux entiers. Si on l’introduit ici, c’est qu’ensuite on
l’appliquera aussi dans les anneaux de congruences, où il est encore plus efficace, et qu’on
s’en servira pour des problèmes d’arithmétiques...

a) L’idée essentielle : Si N = a0 + a12 ⋅ ⋅ ⋅ + an2n, écriture en base deux, avec ai ∈ {0,1} alors :

xN = xa0(x2)a1 . . . (x2n)an .

Ensuite deux points de vue possibles, cela dépend si on connait déjà l’écriture en base 2 de
N ou pas.

1



b) 1ère méthode (des poids faibles vers les poids forts)

En lisant le développement en base deux de droite à gauche si N = (an . . . a0)[2] : c’est le
plus souvent comme cela que l’algorithme est présenté, car dans ce cas, on peut aussi obtenir
les chiffres successifs du développement en base 2 à chaque étape par l’algorithme des poids
faibles déjà vu plus haut : pas besoin d’avoir fait le calcul du dév. en base 2 avant !

Pour mettre en oeuvre l’algorithme on utilise trois variables qu’on va appeler res et aux

comme résultat et auxiliaire et la variable N qui au départ contient comme valeur l’exposant
N et qui va permettre à chaque étape de calculer le chiffre du développement en base 2 de
N .

De manière pas complètement formelle, à l’étape i :

● On stocke dans aux la valeur de x2i , obtenue comme carré de x2i−1 obtenu à l’étape
précédente.

● En même temps, on divise à chaque étape N par 2 pour connâıtre le i-ème chiffre ai de
son écriture en base 2. i.e. on itère N =N//2 . Le ai est le reste de la division euclidienne
de N par 2.

● Enfin toujours à l’étape i , si ai = 1, on multiplie res par x2i c’est-à-dire la valeur de
aux à l’étape i, sinon on ne change pas res.

Exercice à faire : implémenter cette idée d’algorithme en Python.

Rappel l’algo. de dév. en base deux des poids faibles vers les poids forts illustré
sur un exple :

24 = 2 × 12 + 0→ a0 = 0,

12 = 2 × 6 + 0→ a1 = 0,

6 = 2 × 3 + 0→ a2 = 0,

3 = 2 × 1 + 1→ a3 = 1,

1 = 2 × 0 + 1→ a4 = 1.

c) 2ème méthode (des poids forts vers les poids faibles)

En lisant l’écriture en base 2 de gauche à droite : cette méthode évite l’utilisation d’une
variable auxiliaire, mais nécessite d’avoir calculé le développement en base 2 de N : ce qui
n’est pas un gros problème pratique en Python, mais jouerait sur les questions de coût.

L’idée astucieuse, qui est utile dans d’autres contextes (algorithme de Hörner), est d’écrire :

xN = ((. . . (xan)2xan−1)2 . . . )xa1)2xa0

Par exemple avec 24 qui s’écrit 11000 en base 2 : x24 = (((x)2.x)2)2)2).
On lit donc l’écriture en base 2 de N de gauche à droite, on part de res:= 1 et à chaque
étape s’il y a un 1 dans le développement de N en base 2 on remplace res par (res*res)*x,
sinon on prend juste le carré i.e. on remplace res par (res*res).

Exercice à faire : implémenter cette idée d’algorithme en Python

d) Montrer que si N s’écrit avec n+1 chiffres en base 2, alors cet algorithme permet de calculer
xN avec au plus 2n multiplications.

e) Comparer la vitesse de vos fonctions avec celle de la fonction pow(x,N) de Python qui
utilise ce même algorithme d’exponentiation rapide.

2



Suite du T.P. 6

3 Une version du jeu de Nim

Une règle du jeu de Nim est la suivante. Des allumettes sont rangées en tas. Le nombre de tas
et le nombre d’allumettes dans chaque tas est arbitraire. Il y a deux joueurs, A et B. Le premier
joueur A prend un nombre quelconque d’allumettes (mais au moins une) dans UN tas ; il peut ne
prendre qu’une seule allumette, ou autant qu’il souhaite, mais il ne doit toucher qu’un seul tas.
Le joueur B joue ensuite selon les mêmes règles et les joueurs jouent à tour de rôle. Le joueur qui
prend la dernière allumette gagne la partie.

Définition : Nous appellerons configuration gagnante une configuration telle que si un joueur J
(A ou B) peut y parvenir par son coup, alors quelle que soit la façon dont l’autre joueur K (resp.
B ou A) joue après, ce second joueur perdra.

Représentation du jeu : On choisit de se donner l’état du jeu comme une liste où chaque entrée
représente l’effectif d’un tas. Par exemple [4,5,2] signifie qu’il y a trois tas, un avec 4 allumettes,
un autre avec 5 et un autre avec 2 (bien sûr, l’ordre des tas ne compte pas). Un telle liste sera
appelée une configuration du jeu.

Exemple de configuration gagnante : Avec cette convention, on comprend que la configuration
[2,2] est une configuration gagnante. En effet, si A laisse cette configuration à B, alors B n’a que
deux possibilités. Si B prend une allumette d’un tas, alors A en prend une de l’autre tas et on
arrive à [1,1] pour B et clairement A va gagner. Si B prend deux allumettes, alors A prend les
deux du tas restant. Dans tous les cas A gagne.

A titre d’exercice vérifiez que [1,2,3] est une configuration gagnante.

Codage en binaire et configurations ≪ à somme nulle ≫ :
A chaque configuration de jeu, on va associer sa représentation binaire obtenue comme suit.

On écrit l’effectif de chaque tas en binaire en écrivant chaque effectif avec le nombre de chiffres en
binaire nécessaire pour représenter le plus grand effectif. Par exemple la configuration [1,2] a pour
représentation binaire [01,10] et [2,3,6,7] a pour représentation binaire [010,011,110,111].

Pour chaque configuration c écrite en binaire on écrit les nombres les uns en dessous des
autres puis on calcule la somme (modulo 2) des chiffres colonne par colonne par exemple pour

[010,011,110,110], on écrit en tableau :

010
011
110
110
001

On note cette somme S(c) et la représentation en tableau ci-dessus sera appelée tableau de la
configuration où chaque ligne représente un tas.

Pour c1=[11,10], on aura S(c1)=01. Pour c2=[10,10] on aura S(c2)=00.
Pour c3=[010,011,110,111], on aura S(c3)=000.
On a alors l’étonnant :

Théorème : une configuration c est gagnante si, et seulement si, S(c) a tous ses chiffres égaux
à 0.

Démonstration du théorème : elle est en deux parties.
● Si on modifie un tas d’une configuration à somme nulle, alors la configuration n’est plus à

somme nulle. En effet modifier un tas c’est modifier une ligne Li du tableau ci-dessus.
Dire la configuration est à somme nulle revient à dire que la somme de toutes les autres lignes

que la i-ième est égale à la i-ième donc changer la i-ième supprime forcément cette propriété.
● Il est toujours possible, à partir d’une configuration à somme non nulle, de la transformer, en

modifiant seulement une ligne, en une configuration à somme nulle.
Question 1 : comment faire cela ?
●Question 2 : pourquoi les deux points précédents permettent de conclure pour la démonstration

du théorème ?

3



Question 3 : Travail informatique à faire : Ecrire une fonction Nim qui reçoit une liste L

dont les entrées sont les effectifs initiaux des tas, en nombre quelconque, choisis par l’utilisateur.
La fonction va permettre à l’ordinateur et au joueur de jouer à tour de rôle.
L’ordinateur commence.
- Si la configuration n’est pas à somme nulle, il la transforme par la méthode que vous avez

trouvée à la question 2, en une configuration à somme nulle. Puis il demande à l’humain de jouer
et à chaque étape l’ordi refabrique une configuration à somme nulle et l’ordi est sûr de gagner.

- Si la configuration est à somme nulle, l’ordinateur enlève juste une allumette et fait ainsi tant
qu’il n’hérite pas d’une situation à somme non nulle. Bien sûr si le joueur humain sait calculer tout
cela il gagnera mais dès qu’il fait une erreur l’ordi gagnera.

Solution de la Question 1 expliquée sur l’exemple :
11010
10010
00110
00111
01001

On regarde le premier bit de S(c) où il y a un 1 : ici c’est le second.
On regarde la première ligne du tableau où ce bit vaut aussi 1. : ici c’est dans la première.
Dans cette ligne, on va modifier tous les bits qui sont à la même place que les 1 dans S(c), je

les écris avec un étoile dessus L1 = 1
∗
101

∗
0.

Et donc on remplace L1 par L′1 = 10011.
L’important, c’est que comme on modifie le premier bit qui vaut 1 le nombre obtenu est inférieur,

donc cela correspond bien à enlever des allumettes.
Solution de la question 2 : le fait d’être à somme nulle étant un invariant de la configuration

de jeu laissée à l’humain et le nombre d’allumettes étant strictement décroissant (c’est le variant),
va arriver le moment où la configuration laissé à l’humain sera nulle : l’ordi gagne.

4


