Chap. 6 : Représentations des entiers et réels en informatique

Table des matiéres

1 Ecriture des entiers 1
1.1 Les entiers naturels qu’on connait e 1
1.2 Lécriture en base deux o o oo e 2
1.3 Pour obtenir I'écriture en base deux 3
1.4 Culture : la base 16 ou hexadécimal 3

2 Les entiers a l’intérieur d’un ordinateur... et suivant les programmes 3
2.1 Lebit, Poctet 4
2.2 Le codage des entiers aujourd’hui : jusqu’a 64 bits o oL 4
2.3 Le cas des entiers négatifs : la méthode des compléments 5

2.3.1 Echauffement sur 'exemple des int8)
2.3.2 Obtention commode du codage choisi pour les entiers négatifs 5
2.3.3 Application au calcul des différences 6
2.3.4 Casdesentiersen 64 bits 6

3 Représentation binaire des réels : maths 6
3.1 A propos de l'écriture décimale 6
3.2 Ecriture binaire (ou dyadique) 7
3.3 Comment calculer la représentation binaire d’un nombre réel donné par son écriture

décimale? e 7

4 Représentation informatique des réels : les flottants 7
4.1 La représentation mantisse-exposant en base 10 7
4.2 La représentation mantisse-exposant en base 2 8
4.3 Le standard double précision sur les flottants : 64 bits, illustré en PYTHON 8

4.3.1 La définition du standard 8
4.3.2 Conséquence : nombre de chiffres significatifs 9
4.3.3 Le plus grand et le plus petit float : lintervalle des nombres machines
(normalisés) 9
4.3.4 Format d’affichage des flottants en PYTHON 10
A Excursion niveau college : les compléments en base dix 11

1 Des maths : D’écriture des entiers naturels en base dix,
deux, seize,..

1.1 Les entiers naturels qu’on connait

Nous avons tous une idée intuitive de la notion de nombre entier naturel. En mathématiques,
on montre que toutes les propriétés des entiers viennent des trois axiomes suivants :
Il existe un ensemble essentiellement unique noté N, muni d’'une application s : N - N
avec les propriétés :
(1) s est injective,
(ii) il existe dans N un élément noté 0 tel que 0 ¢ s(N),
(iii) pour tout sous-ensemble A de N, si A contient 0 et est stable par s, alors A = N.

N.B. Ces axiomes disent tout sur N. Si on les cite ici, c’est pour signifier que la nature des nombres
entiers est purement liée a cette notion de succession et pas a la facon de les écrire. 1ls disent aussi
que le raisonnement par récurrence contient la clef de toutes les propriétés des entiers....

Nous avons [’habitude de manipuler les entiers en base diz, dire n = 340587 signifie pour nous
n=3.10° +4.10* + 0.10* + 5.102 + 8.10" + 7.10°.
D’une maniere générale, dire que [’écriture décimale d'un nombre entier naturel est de la forme :

n=arar_1...a1a9, avec, Vi€ [0,r],a; €[0,9],
signifie en fait que :

n=a,10" + ay_1.10"" 4+ a1.10 + aq.

Le < I”» devant le mot écriture est justifié par le fait que cette écriture est unique pour chaque
nombre entier, a condition de demander que si n # 0, a,, # 0. Pour n = 0, on choisit, bien str, en
maths, comme unique écriture, I’écriture ag = 0.

Cette habitude n’est qu'une convention, qui a correspondu au choix de dix chiffres pour coder
tous les nombres.

1.2 L’écriture en base deux

Aujourd’hui, avec les ordinateurs, une autre écriture est devenue incontournable : I’écriture en
base deux.
Une telle écriture va coder une décomposition du nombre entier n sous la forme :

n=bp2" +b, 127+ 1512+ by, avec Vi e [0,7],b; € {0,1} (%)

Pour un exemple concret : voici ng = 2% +22 + 2 + 20
Pour signifier qu’on a P’écriture (1) ci-dessous, on peut noter :

n= brbrfl N b0[2]7

et dans I'exemple concret ng = 1011123.

Moins rigoureusement peut-étre, on dira aussi simplement n = b,.b,_1 ...bg en base deuz!

Bien stir, dans notre exemple ng =16 +4 + 2+ 1 = 23 en base dix. Donc on écrira 23 = 10111 ()
et encore, de fagon moins rigoureuse : 23 = 10111 en base deux.

Théoréme 1. Toute nombre entier naturel admet une unique écriture de la forme :
n=0p2" +b, 127"+ +b1.2 + by, avec Vi € [0,7],b; € {0,1}

a condition de spécifier que pour n = 0 I'écriture est donnée par r =0, by =0 et pour n =0, b, # 0.
Avec ces conventions, tout entier naturel non nul admet donc une unique écriture en base deux :

n = bpby_1-+-b1bo[zy,
avec b, # 0.

L’unicité dans le théoréeme précédent permet la :

Définition. Avec les notations du théoréme précédent, le nombre [= r + 1 sera appelé ici longueur
de Uécriture en base deux de n. Par exemple, cette longueur vaut 1 si, et seulement si, n = 0 ou
n=1.

Exercice 1. a) Donner l'écriture en base deux de tous les entiers de 1 & 12. A partir de
maintenant vous savez compter en base deux. Cette écriture des entiers vérifie tout aussi
bien les axiomes de Peano.

b) Quel est le plus grand entier que I’on peut écrire avec 8 chiffres en base deux ? Méme question
en remplagant 8 par un entier | quelconque ?

¢) Démontrer si on note | = r + 1 la longueur de 1’écriture d’un entier n strictement positif en
base deux vérifie alors r = |logy(n) |, ot | | désigne la partie entiére.

1.3 Comment obtenir ’écriture en base deux d’un nombre écrit en base
dix?

(M1) Des poids forts vers les poids faibles : Mettons qu’on veuille savoir comment s’écrit
54 en base deux. On commence par se demander entre quelles puissances de deux il est : ici 32 et
64. On sait alors quel est le premier chiffre (en partant de la gauche, celui qu’on appelle le poids
fort) de son écriture en base deux : comme 32 = 2°, 54 = 2° + (54 — 32) = 2° + 22. On fait le méme
travail pour 22.

Exercice 2. Finir ce travail, pour obtenir I’écriture en base deux de 54, puis faire de méme pour
361.

(M2) Des poids faibles vers les poids forts : L’idée de départ est que si n = b,2"+--+b12+bg
alors en particulier n = 2B + by ol B est un entier et by € {0,1}. Donc by est le reste de la division
euclidienne de n par 2. Donc on sait calculer by, le dernier chiffre de ’écriture de n en base 2 (le
poids le plus faible). On a bien str by = sin est pair et by = si n est impair. Pour 54 ce chiffre
fait donc

On peut ensuite appliquer la méme méthode au quotient B de cette division euclidienne. A
partir de Iécriture de départ, B = b,2" ! +---b9.2 + by et obtenir b;.

Exercice 3. Appliquer cette méthode pour obtenir I’écriture en base deux de 54, puis de 361.

[On comparera et implémentera ces deux méthodes en T.P.j

1.4 Culture : la base 16 ou hexadécimal

L’écriture en base 16 utilise traditionnellement les dix chiffres 0,1,. . .,9 suivis par les six premiéres
lettres de I'alphabet A,B,C,D,E F. Ainsi la lettre A correspond au 10 de la base 10, et F correspond
a 15 en base dix.

Pour comprendre un nombre écrit en hexadécimal, on utilise une écriture analogue a celle vue
au 1.1, avec les puissances de 16, en remplacant les lettres par leur valeur décimale : par exemple
si n=3E5D en hexadécimal, on a :

n=3x16%+14x 16> +5x 16 + 13.
Exercice 4. a) A quelle 4ge, en hexadécimal, peut-on passer le permis de conduire en France,

si on n’a pas fait la conduite accompagnée ?

b) En informatique, le systéme RGB (Red Green Blue) définit une couleur comme la donnée
de trois nombres chacun entre 0 et 255, définissant pour le premier le niveau de Rouge, le
second le niveau de vert, le troisieme le niveau de bleu. (i) Quelle couleur donne le code
html #FF0000 ? (ii) Plus dur : méme question pour #FFFF00 ?

Notation en PYTHON(mais aussi C, Java...) La notation 0x27 signifie qu’on considere le
nombre qui admet I’écriture 27 en hexadécimal. La commande hex convertit de décimal en hexa.

Exercice 5. Expliquer comment obtenir 1’écriture binaire d’'un nombre & partir de son écriture
hexadécimale. Le faire sur 'exemple de n = 3E5D.

2 Les entiers a l'intérieur d’un ordinateur... et suivant les
programmes

En informatique, les variables ont un type qui désigne leur nature : ici, nous allons d’abord
parler du type entier integer!.

1. Ce qui se prononce 'intedjer et pas integueur comme on entend souvent en France.

2.1 Le bit, Poctet

Le bit est 'unité d’information : il vaut 0 ou 1. Au début de I'informatique, 'information était
transmise par paquets de 8 bits : on appelle octet un mot de 8 bits. Avec des octets, on peut donc
écrire 28 = 256 suites de 0 et de 1, différentes, comme par exemple 01001011.

2.2 Le codage des entiers aujourd’hui : jusqu’a 64 bits

Les ordinateurs personnels les plus récents ont des microprocesseurs 64 bits, ce qui signifie que
I'information arrive par paquets de 64 bits.

En PYTHON 2, mais aussi dans beaucoup de langages, les entiers standard (type int, en Py-
THON) sont codés sur 64 bits, c’est-a-dire encore 8 octets. (Si vous avez une machine 32 bits, ce
sera sur 32 bits. De méme si vous avez une machine 64 bits, mais un systeme d’exploitation gérant
32 bits).

Cependant quand, on parle d’entiers en informatique, il s’agit d’entiers avec signe, qui peuvent
étre négatifs, on va garder un bit (par convention le premier) pour coder le signe.

Définition (Bit de signe). Pour tous les entiers, le premier bit code le signe : 0 code les positifs,
1 code les négatifs. Ainsi, si les entiers sont codés sur 64 bits, les entiers positifs seront tous de la
forme 0b; . ..bg3

On dispose donc de 63 bits pour coder les entiers positifs d’ou I’ :

Exercice 6. a) Quel est donc le plus grand entier de type int en PYTHON 27

b) Essayer en PYTHON 2.7.
>> a=2%%*x62
>> type(a)
puis
>> a=2*x*x63
>> type(a)
Commentez. Puis faites la méme chose en PYTHON 3.

Avec NUMPY, on peut spécifier davantage le type des nombres qu’on manipule. Voici un extrait
de la doc. :

Data type Description

bool_ Boolean (True or False) stored as a byte

int_ Default integer type (same as C long; normally either int64 or int32)
intc Identical to C int (normally int32 or int64)

intp Integer used for indexing (same as C ssize_ t; normally either int32 or int64)
int8 Byte (-128to 127)

int16 Integer (-32768 to 32767)

int32 Integer (-2147483648 to 2147483647)

inte4 Integer (-9223372036854775808 to 9223372036854775807)

uint8 Unsigned integer (0 to 255)

uint16 Unsigned integer {0 to 65535)

uint32 Unsigned integer (0 to 4294967295)

uint64 Unsigned integer (0 to 18446744073709551615)

float_ Shorthand for floaté4.

float16 Half precision float: sign bit, 5 bits exponent, 10 bits mantissa

float32 Single precision float: sign bit, 8 bits exponent, 23 bits mantissa

floate4d Double precision float: sign bit, 11 bits exponent, 52 bits mantissa

Par exemple : on peut déclarer a=np.int8(77) pour fabriquer un entier, avec signe, codé sur 8
bits.

Exercice 7 (Les mauvais gag de manip. des entiers sur un nombre de bits donnés).

a) Que donnent les commandes : a=np.int8(120) b=np.int8(100) a+b
b) Expliquer la réponse du a).

¢) A quoi sert donc ce type entier int8 (resp. int16 etc), s’il est si dangereux ?

2.3 Le cas des entiers négatifs : la méthode des compléments
2.3.1 Echauffement sur ’exemple des int8

On consideére les entiers codés sur 8 bits, (les int8 de numpy) : pour les entiers positifs, le plus
grand est 01111111 = 27 — 1 = 127, car on n’oublie pas le bit de signe 0.

Une premiére idée, non retenue, de codage pour les négatifs : on aurait pu coder les
négatifs n € [-127,-1] en mettant 1 devant écriture de |n| en base deux, mais ce n’est pas ce qui
a €té choisi! Une premiere raison évidente est qu’alors on aurait perdu de la place car on aurait eu
deux fagons d’écrire 0. Mais la raison la plus importante est liée a I’addition.

En effet, avec un tel codage : 2 serait codé par 00000010 et -2 par 10000010, mais alors la
somme usuelle sur les nombres en binaires donnerait comme résultat 10000100 c’est-a-dire -4. 11
faudrait donc coder ’addition de maniere différente suivant qu’on ajoute des positifs entre eux
(addition usuelle) ou des positifs avec des négatifs.

Il s’avere qu’il y a un moyen de contourner cette difficulté avec la :

Définition (La vraie convention de codage pour les négatifs). Si n est un entier

négatif, avec n € [-128,-1], on le code, directement sur 8 bits, par cs(n) el g8 _ |n| =
256 +n € [128,255], écrit en binaire. En effet, le premier bit est alors forcément un 1 et donc
on sait qu'il s’agit du code d’un nombre négatif.

Exemple. Le plus petit entier négatif, —128 sera codé par 128 écrit en binaire, donc ¢3(n) =10000000.
C’est un mauvais exemple car —128 + 256 = 128. D’ou I’

Exercice 8. Quel est le codage ¢2(-103) de —-1037

2.3.2 Obtention commode du codage choisi pour les entiers négatifs

La notion de complément & 1 : Si a partir d’'un int8, x, on en modifie les 8 bits en changeant
les 0 en 1 et les 1 en 0, on obtient un nombre c(x) qui s’appelle le complément a 1 de x.
Par exemple ¢(10011101)=01100010.
Par construction, il est évident qu’en notant + I’addition des nombres écrits en base 2, x+c(x)=
Cela donne une relation simple entre x et c(x), qu’on écrira : c(x)=

Application a I’interprétation du codage des entiers négatifs :

On a dit au § 2.3.1 que si n € [-128, 1], on le codait par ca(n) = 28 +n € [128,255].

Cette relation ressemble un peu a ce qu’on vient de dire pour le complément a 1. Précisément,
pour obtenir le codage de n € [-128,-1] en int8, il suffit de faire les opérations suivantes :

a) On considere Uentier naturel z = —(n + 1) € [0,127], toujours en base deux,

b) puis on consideére son complément & 1, ¢(x). On a alors le codage cherché :
ca(n) =c(-(n+1))

Le codage co défini au § 2.3.1, s’appelle (bizarrement) le complément & deuz (il vau-
drait mieux dire complément a 2° puisqu’au total on a obtenu 2% - |n)).

Exemple Pour n =-103 =-01100111f5}, on a x = —=(-103+1) = (103 -1) = 011001102}, puis avec
le complément & 1, on obtient : ¢(x) = 1001100151, qui est bien cz(n) comme & l'exercice 8.

Exercice 9. Justifier que, d’'une maniere générale, la méthode donnée dans le cartouche ci-dessus
est valide, c’est-a-dire qu’on a toujours I’égalité : ca(n) = c¢(—(n + 1)).

2.3.3 Application au calcul des différences

Remarque 1. On a vu au chapitre 1 comment il est facile pour un ordinateur d’ajouter des
entiers positifs écrits en base deux (avec une porte logique par bit). Le probléeme que 1'on posait au
début du § 2.3.1 était celui de traiter, avec la méme opération +, ’addition d’un entier positif et
d’un entier négatif. On va voir que le codage des négatifs par les compléments & deux permet cela
efficacement.

Un petit exemple valant mieux qu'un long discours, avec des nombres a trois chiffres en base
deux, & chaque fois le codage machine est & droite (N.B. le codage machine est alors en complément
a 23).

On code les nombres sur trois bits 0, 1,2, 3 sont codés resp. par 000,001,010,011 et les négatifs
n =-4,-3,-2, -1 codés par les compléments & 23 comme 23+n écrit en base 2 donc 100,101,110, 111.

1 001

+ =2 + 110
-1 111

-1 111

+ =2 + 110
-3 101

Notez qu’ici dans le résultat, on n’écrit pas le dernier 1 qui devrait apparaitre a gauche par retenue.
La propriété générale est la suivante :

Proposition 1. Pour ajouter deux entiers a et b dans [-128,127] dont la somme reste dans cet
intervalle, il suffit de faire la somme de leurs représentations en int8. Si cette somme a un 9-ieme
chiffre & gauche on I'enleéve! Le résultat obtenu est bien le codage machine de a + b.

Exercice 10. Prouver la propriété. Si vous avez du mal, lisez I’appendice A.

2.3.4 Cas des entiers en 64 bits

Pour les entiers codés sur 64 bits, on a la méme convention de codage, avec le premier bit qui
donne le signe, et le méme systeme de complément a deux pour les entiers négatifs : cette fois, si
n <0, ca(n) =25 +n.

L’intervalle des entiers codés sur 64 bits en PYTHON est donc [-263,263 —1].

3 Représentation binaire des réels : maths

3.1 A propos de I’écriture décimale

Nous avons I'habitude de ’écriture décimale, qui pour tout réel positif x est de la forme :
z=a,10" + 110" + @110+ ag + a_1107 + -+ a_, 1078 + 0 (1)

Dans cette écriture, tous les a; sont entre 0 et 9, les ... a la fin signifie que cette écriture peut
étre infinie.

Par exemple 1/3 = 0,3333....

Les nombres qui admette une écriture finie de la forme (1) s’appellent les nombres décimauz.

Attention : les nombres décimaux ont aussi la particularité d’avoir une autre écriture décimale,
dite impropre, qui consiste & écrire une infinité de 9 a la fin.

Par exemple 1 =0,9999.... oui égal et pas approzimativement égal (cf. appendice maths sur les
limites) : une telle écriture d’un décimal avec que des 9 a la fin s’appelle écriture impropre.

A part ce probleme des écritures impropres pour les nombres décimaux, ’écriture décimale d’un
nombre réel est unique.

3.2 Ecriture binaire (ou dyadique)

On a de méme la :

Proposition 2. Tout réel positif x s’écrit :
T =029+ +b12+bg + b2t b, 27F

ou les b; valent tous 0 ou 1, les (b_;);eny ne sont pas tous égaux a 1 a partir d'un certain rang
(écriture propre).

Définition. Les nombres qui admette une développement binaire fini sont appelés nombres dya-
diques. Ils sont de la forme a/2* ol a est un entier.

3.3 Comment calculer la représentation binaire d’un nombre réel donné
par son écriture décimale 7

On considére un nombre réel positif x. Grace aux méthodes du § 1.2, on sait trouver I’écriture
binaire de sa partie entiere |x].

Pour trouver les coefficients b_j pour k > 0, qui apparaissent dans 1’écriture de la prop. du § 3.2,
on multiplie = par 2%, ce qui donne :

Py =y bop12+b_p + b_k_12’1 + -
En considérant le reste de la division euclidienne par 2 de [2*x|, on obtient b_.

Exercice 11. Déterminer I’écriture binaire des nombres qui s’écrivent en base dix sous la forme

3,25 et 0, 1.

4 Représentation informatique des réels : les flottants

4.1 La représentation mantisse-exposant en base 10

Pour tous les nombres décimaux, on va convenir d’'une écriture normalisée : considérons par
exemple le nombre décimal x = 1234, 5678

On peut aussi I’écrire 123,45678.10 ou 12, 345678.102 ou 1,2345678.10° ou 0, 12345678.10* ou
12345,678.107" etc.

Parmi toutes ces écritures, on va choisir comme écriture normalisée : z = 1,2345678.10% et d’une
maniere générale :

Définition. L’écriture normalisée, en base dix, d’un nombre décimal x strictement positif avec
une mantisse de longueur r + 1 et un exposant e > 0 est une écriture de la forme :

T =ap,0p_1...09.10°

avec Vi€ [0,7], a; € [0,9] et a, # 0.
Dans cette représentation, la mantisse est le nombre a,a,_1 . ..ag.

Remarque 2. En informatique, la longueur de la mantisse va étre fixée, ce qui bien sir, va nous
obliger & considérer des valeurs approchées des nombres réels (méme décimaux) s’ils s’écrivent avec
davantage de chiffres.

Définition (Notation “scientifique” en base dix). En PYTHON la notation 23e17 signifie 23 x 10'7.
L’ordinateur renverra ’écriture normalisée 2.3e18.

4.2 La représentation mantisse-exposant en base 2

C’est celle qui nous sera utile pour passer ensuite au vrai codage des nombres en machine a la
section suivante.
On a I'analogue exact de la définition précédente :

Définition (mantisse mathématique binaire sans signe). L’écriture normalisée, en base 2, d'un
nombre z > 0 avec une mantisse de longueur r+1 et un exposant e € Z est une écriture de la forme :

€
T=QpyQp_q - ~~ao[2]~2

avec Vi€ [0,r], a; € [0,1] et a, # 0, donc a, = 1.
Dans cette représentation, la mantisse mathématique binaire, sans signe, est le nombre

ArQp_1 ... Go[2] = @r2" + ar12" Mk ay2 + ag.

Remarque 3. Souvent on convient de noter un tel nombre par le couple (m, e) ot m est la mantisse
et e est 'exposant. Cependant, & ce stade, on n’a parlé que des nombres strictement positifs. Nous
aborderons le codage des négatifs et de zéro, ainsi que le codage des exposants, dans la section 4.3
suivante consacrée a la norme IEEE. La vraie mantisse machine sera en fait légérement différente
de la mantisse mathématique de la définition précédente, notamment a cause d’un bit rajouté pour
le signe, et aussi parce qu’en binaire, pour les nombres strictement positifs, le nombre a, # 0 est
forcément un 1, ce qui permettra de [’enlever du codage du nombre.

Pour I'instant, contentons nous de nous familiariser avec un :

Un bébé exemple : considérons les nombres strictement positifs que 'on peut représenter avec
une mantisse mathématique binaire m de longueur 3, et un exposant e € [-2,1].

Exercice 12. a) Combien a-t-on de nombres strictement positifs de cette forme ?
b) Quels sont les entiers parmi ces nombres ?

1
¢) Combien y-a-t-il de tels nombres dans [5, 1[?

11
d) Méme question dans [Z’ 5[?

e) Quel est le plus grand et le plus petit parmi ces nombres ?

4.3 Le standard double précision sur les flottants : 64 bits, illustré en
PYTHON

Les différences de représentation des nombres flottants d’un ordinateur a un autre obligeaient
au départ a reprendre les programmes de calcul pour les porter d’'une machine a une autre. Pour
assurer la compatibilité entre les machines, une norme a été proposée par 'IEEE (Institute of
Electrical and Electronics Engineers) et ceci, dés 1985.

4.3.1 La définition du standard

Définition. Le format simple précision est codé sur 32 bits, et le double précision utilise 64 bits.
En PYTHON comme de plus en plus partout, le format utilisé est le format double précision (méme
si votre ordinateur est un 32 bits). Le signe est codé sur un bit, 'exposant sur 11 bits, et la mantisse
est codée sur 52 bits. On va voir plus précisément comment chacun est codé.

Sign Exponent Significand
64 63 53 52 1

Figure 1: An IEEE-754 64 bits binary floating point number.

a) Le bit de signe S porte 0 pour les positifs stricts et 1 pour les négatifs stricts. On va voir
que le nombre zéro a? deux codages I'un avec 0 I’autre avec 1 comme bit de signe.

b) Le code E pour l'exposant : Les 11 bits d’exposants peuvent coder 2'* = 2048 nombres.
Comme on veut coder aussi bien des exposants positifs que négatifs, plutét que d’utiliser
un bit de signe, on va décaler les exposants. En notant e I’exposant mathématique, on code
E = e+ 1023 en base deux (on parle d’«< exposants biaisés »). On convient que les valeurs
mathématiques autorisées pour e sont dans [-1022,1023] et donc E € [1,2046]. Reste deux
valeurs spéciales disponibles pour E.

i) E =0 codera les nombres trés petits et notamment 0.

i) F =2047 codera le nombres trop grands traités comme infinis.
¢) Le code M de mantisse machine :

i) Pour le nombre 0, on le code avec la mantisse machine M =0...0 et I’exposant machine
E =0 réservé.

ii) Pour les nombres non nuls, on sait que la mantisse mathématique m = a,a,-1...ag
commence par a, = 1. La mantisse machine M codera a,_1...ag0...0 en complétant
avec des 0 pour avoir 52 chiffres si nécessaire.

Exemple. Le nombre 1, qui avait une mantisse mathématique m = 1 et un exposant e = 0 sera
codé par S =0, £ =01111111111, M =0...0. Car E = e + 1023 écrit en base deux et M s’obtient a
partir de m en enlevant le premier 1.

Exercice 13. Quel sera le codage machine des nombres suivants écrits en base deux : @ = 1,0111.23,
b=-1,101.27°7

Définition (Nombres machines normalisés). On appelle nombres machines normalisés le sous-
ensemble des nombres dyadiques qui peuvent étre écrits exactement par le codage IEEE précédent.
C’est bien str un ensemble fini. Pour les autres nombres, les nombres machines serviront d’ap-
proximation.

4.3.2 Conséquence : nombre de chiffres significatifs

Exercice 14 (Nombres de chiffres significatifs). a) Suivant le format défini précédemment, on
peut coder exactement des nombres qui n’ont besoin « que » d’une mantisse mathématique
de 53 chiffres en binaires (53 = 52+1 car le premier 1 est omis dans la mantisse machine). On
dit qu’il y a 53 chiffres significatifs en binaire. Combien a-t-on alors de chiffres significatifs
en écriture décimale ?

b) Tester le programme suivant :
i=1
while 1.+10%*(-i)>1.:
i=i+1

4.3.3 Le plus grand et le plus petit float : ’intervalle des nombres machines (nor-
malisés)
Exercice 15 (Dépassement de capacité : overflow, underflow). Exécutez les lignes suivantes
en PYTHON et commentez le résultat par rapport a la déf. donnée au 4.3.1
a) 1e-323, le-324
b) 1e308, 1e309

Remarque 4. Comme expérimenté dans 1’exercice précédent a), le code IEEE permet de gérer
des nombres plus petits que les nombres décrits au § 4.3.1. Ceci est possible par le fait que pour
Iinstant avec le code d’exposant E =0...0, on n’a codé que le nombre 0. Les nombres codés avec
M #0et E=0...0 sont dits sous-normauz, nous n’insisterons pas sur ce point.

2. contrairement au cas des entiers

Remarque 5. Toutes ces informations sont disponibles en PYTHON, via le module sys qui contient
des informations systemes.

from sys import *
on importe tout le contenu du module
float_info.max_exp

qui répond bien 1024, mais il faut comprendre que 1024 est le premier interdit.
Vous pouvez jouer avec les options de complétion de la commande float_info. pour apprendre
plus de choses.

Définition (L’intervalle des nombres machines et les nombres normalisés). D’apres ce qui précede 3,

tous les flottants normalisés représentés en machines en PYTHON, sont donc dans l'intervalle
N -1022 1024

[ajminyxmax[Ou Tmin = 2 et Tmax = 2 .

Remarque 6 (Différence overflow/underflow). Si au cours d’un calcul avec des floats 'ordina-
teur tombe sur un nombre plus grand que Zax, on dit qu’il y a un overflow (dépassement), et le
calcul s’arréte, pour donner un infini. S’il tombe sur un nombre positif strictement plus petit que
Tmin, le calcul continue, mais en donnant au nombre en question la valeur zéro (en fait, on peut
modifier la gestion de ces cas).

4.3.4 Format d’affichage des flottants en PyTHON

En python : on doit a chaque fois préciser le format qu’on veut pour I'affichage. La raison est
qu’il s’agit d’'un langage de programmation : le code doit dire exactement le résultat qu’on
veut, indépendamment d’un réglage global.

Par exemple, en PYTHON, avec le module math pour avoir pi :

>>> {:.22f}’ .format (pi)
’3.1415926535897931159980°

Ici le .22f veut dire qu’on veut 22 chiffres apres la virgule. Nous reviendrons sur 'utilisation
de la méthode format en PYTHON.

Ceci donne un nombre 7 qui est différent de celui de MATHEMATICA a partir de la 16eme
décimale! Cela peut paraitre étrange non? On pourrait se dire que de toutes fagons tous les calculs
numériques n’auront pas une précision de plus de 16 chiffres, donc cette erreur sur = n’affecterait
pas les calculs : c’est faux, a cause des phénomenes de « cancellation » que ’on verra plus tard en
calcul numérique. Alors, pourquoi avoir <« rentré » un nombre 7 faux ? Voir ’exercice suivant :

Exercice 16 (L’explication du mystére sur 7). Le nombre pi du module math est un float, codé
donc sur avec une mantisse binaire de 53 chiffres. Une fagon de savoir exactement quel est le nombre
codé en machine pour pi est d’utiliser la commande pi.as_integer_ratio() qui répond

(884279719003555, 281474976710656)

Ce couple dit que le pi du module math est le nombre rationnel (884279719003555/281474976710656)
a) Obtenir Iécriture en base deux de chacun de ces deux nombres & ’aide de PYTHON.
b) Conclure : quelle est la représentation (m,e) binaire de ce nombre pi ?

¢) Aurait-il été possible de représenter pi plus précisément ? Question difficile!

3. en laissant de coté les nombres sous-normaux

10

A Excursion niveau college : les compléments en base dix

En base dix, on parle de méthode des compléments pour désigner la méthode suivante :

Définition. Pour chaque chiffre i, son complément est par définition 9 — 1.

Pour un nombre n a r chiffres par exemple n = 356291, on appelle complément de n le nombre
c obtenu en remplagant chaque chiffre de n par son complément.

Sur ’exemple ¢ = 643708.

L’intérét d’introduire les compléments vient de la facile :

Proposition 3. Pour calculer la différence a — b de deux nombres entiers a et b, on peut écrire le
complément ¢ de a, calculer la somme S = ¢+ b puis écrire le complément C' de S. Alors C =a —b.

Exemple Si on veut calculer 24563 — 15743. On écrit le complément de 24563 qui est ¢ = 75436.
On calcule la somme b+ ¢ = 75436 + 15743 = 91179. Le complément de la somme s’écrit 08820, c’est
la différence cherchée.

Exercice 17. Démontrez cette propriété.

11

