
Chap. 6 : Représentations des entiers et réels en informatique

Table des matières

1 Ecriture des entiers 1
1.1 Les entiers naturels qu’on connâıt . 1
1.2 L’écriture en base deux . 2
1.3 Pour obtenir l’écriture en base deux . 3
1.4 Culture : la base 16 ou hexadécimal . 3

2 Les entiers à l’intérieur d’un ordinateur... et suivant les programmes 3
2.1 Le bit, l’octet . 4
2.2 Le codage des entiers aujourd’hui : jusqu’à 64 bits . 4
2.3 Le cas des entiers négatifs : la méthode des compléments 5

2.3.1 Echauffement sur l’exemple des int8 . 5
2.3.2 Obtention commode du codage choisi pour les entiers négatifs 5
2.3.3 Application au calcul des différences . 6
2.3.4 Cas des entiers en 64 bits . 6

3 Représentation binaire des réels : maths 6
3.1 A propos de l’écriture décimale . 6
3.2 Ecriture binaire (ou dyadique) . 7
3.3 Comment calculer la représentation binaire d’un nombre réel donné par son écriture

décimale ? . 7

4 Représentation informatique des réels : les flottants 7
4.1 La représentation mantisse-exposant en base 10 . 7
4.2 La représentation mantisse-exposant en base 2 . 8
4.3 Le standard double précision sur les flottants : 64 bits, illustré en Python 8

4.3.1 La définition du standard . 8
4.3.2 Conséquence : nombre de chiffres significatifs 9
4.3.3 Le plus grand et le plus petit float : l’intervalle des nombres machines

(normalisés) . 9
4.3.4 Format d’affichage des flottants en Python . 10

A Excursion niveau collège : les compléments en base dix 11

1 Des maths : l’écriture des entiers naturels en base dix,
deux, seize,..

1.1 Les entiers naturels qu’on connâıt

Nous avons tous une idée intuitive de la notion de nombre entier naturel. En mathématiques,
on montre que toutes les propriétés des entiers viennent des trois axiomes suivants :

Il existe un ensemble essentiellement unique noté N, muni d’une application s ∶ N → N
avec les propriétés :
(i) s est injective,
(ii) il existe dans N un élément noté 0 tel que 0 /∈ s(N),
(iii) pour tout sous-ensemble A de N, si A contient 0 et est stable par s, alors A = N.

N.B. Ces axiomes disent tout sur N. Si on les cite ici, c’est pour signifier que la nature des nombres
entiers est purement liée à cette notion de succession et pas à la façon de les écrire. Ils disent aussi
que le raisonnement par récurrence contient la clef de toutes les propriétés des entiers....

1

Nous avons l’habitude de manipuler les entiers en base dix, dire n = 340587 signifie pour nous
n = 3.105 + 4.104 + 0.103 + 5.102 + 8.101 + 7.100.

D’une manière générale, dire que l’écriture décimale d’un nombre entier naturel est de la forme :

n = arar−1 . . . a1a0, avec ,∀ i ∈ ⟦0, r⟧, ai ∈ ⟦0,9⟧,

signifie en fait que :

n = ar10r + ar−1.10r−1 +⋯ + a1.10 + a0.

Le ≪ l’ ≫ devant le mot écriture est justifié par le fait que cette écriture est unique pour chaque
nombre entier, à condition de demander que si n ≠ 0, ar ≠ 0. Pour n = 0, on choisit, bien sûr, en
maths, comme unique écriture, l’écriture a0 = 0.

Cette habitude n’est qu’une convention, qui a correspondu au choix de dix chiffres pour coder
tous les nombres.

1.2 L’écriture en base deux

Aujourd’hui, avec les ordinateurs, une autre écriture est devenue incontournable : l’écriture en
base deux.

Une telle écriture va coder une décomposition du nombre entier n sous la forme :

n = br.2
r
+ br−12r−1 +⋯ + b1.2 + b0, avec ∀ i ∈ ⟦0, r⟧, bi ∈ {0,1} (†)

Pour un exemple concret : voici n0 = 24 + 22 + 2 + 20

Pour signifier qu’on a l’écriture (†) ci-dessous, on peut noter :

n = brbr−1 . . . b0[2],

et dans l’exemple concret n0 = 10111[2].
Moins rigoureusement peut-être, on dira aussi simplement n = brbr−1 . . . b0 en base deux !
Bien sûr, dans notre exemple n0 = 16 + 4 + 2 + 1 = 23 en base dix. Donc on écrira 23 = 10111[2]

et encore, de façon moins rigoureuse : 23 = 10111 en base deux.

Théorème 1. Toute nombre entier naturel admet une unique écriture de la forme :

n = br.2
r
+ br−12r−1 +⋯ + b1.2 + b0, avec ∀ i ∈ ⟦0, r⟧, bi ∈ {0,1}

à condition de spécifier que pour n = 0 l’écriture est donnée par r = 0, b0 = 0 et pour n ≠ 0, br ≠ 0.
Avec ces conventions, tout entier naturel non nul admet donc une unique écriture en base deux :

n = brbr−1⋯b1b0[2],

avec br ≠ 0.

L’unicité dans le théorème précédent permet la :

Définition. Avec les notations du théorème précédent, le nombre l = r+1 sera appelé ici longueur
de l’écriture en base deux de n. Par exemple, cette longueur vaut 1 si, et seulement si, n = 0 ou
n = 1.

Exercice 1. a) Donner l’écriture en base deux de tous les entiers de 1 à 12. A partir de
maintenant vous savez compter en base deux. Cette écriture des entiers vérifie tout aussi
bien les axiomes de Peano.

b) Quel est le plus grand entier que l’on peut écrire avec 8 chiffres en base deux ? Même question
en remplaçant 8 par un entier l quelconque ?

c) Démontrer si on note l = r + 1 la longueur de l’écriture d’un entier n strictement positif en
base deux vérifie alors r = ⌊log2(n)⌋, où ⌊ ⌋ désigne la partie entière.

2

1.3 Comment obtenir l’écriture en base deux d’un nombre écrit en base
dix ?

(M1) Des poids forts vers les poids faibles : Mettons qu’on veuille savoir comment s’écrit
54 en base deux. On commence par se demander entre quelles puissances de deux il est : ici 32 et
64. On sait alors quel est le premier chiffre (en partant de la gauche, celui qu’on appelle le poids
fort) de son écriture en base deux : comme 32 = 25, 54 = 25 + (54 − 32) = 25 + 22. On fait le même
travail pour 22.

Exercice 2. Finir ce travail, pour obtenir l’écriture en base deux de 54, puis faire de même pour
361.

(M2) Des poids faibles vers les poids forts : L’idée de départ est que si n = br2r+⋯+b12+b0
alors en particulier n = 2B + b0 où B est un entier et b0 ∈ {0,1}. Donc b0 est le reste de la division
euclidienne de n par 2. Donc on sait calculer b0, le dernier chiffre de l’écriture de n en base 2 (le
poids le plus faible). On a bien sûr b0 = si n est pair et b0 = si n est impair. Pour 54 ce chiffre
fait donc .

On peut ensuite appliquer la même méthode au quotient B de cette division euclidienne. A
partir de l’écriture de départ, B = br2r−1 +⋯b2.2 + b1 et obtenir b1.

Exercice 3. Appliquer cette méthode pour obtenir l’écriture en base deux de 54, puis de 361.�� ��On comparera et implémentera ces deux méthodes en T.P.

1.4 Culture : la base 16 ou hexadécimal

L’écriture en base 16 utilise traditionnellement les dix chiffres 0,1,. . .,9 suivis par les six premières
lettres de l’alphabet A,B,C,D,E,F. Ainsi la lettre A correspond au 10 de la base 10, et F correspond
à 15 en base dix.

Pour comprendre un nombre écrit en hexadécimal, on utilise une écriture analogue à celle vue
au 1.1, avec les puissances de 16, en remplaçant les lettres par leur valeur décimale : par exemple
si n=3E5D en hexadécimal, on a :

n = 3 × 163 + 14 × 162 + 5 × 16 + 13.

Exercice 4. a) A quelle âge, en hexadécimal, peut-on passer le permis de conduire en France,
si on n’a pas fait la conduite accompagnée ?

b) En informatique, le système RGB (Red Green Blue) définit une couleur comme la donnée
de trois nombres chacun entre 0 et 255, définissant pour le premier le niveau de Rouge, le
second le niveau de vert, le troisième le niveau de bleu. (i) Quelle couleur donne le code
html #FF0000 ? (ii) Plus dur : même question pour #FFFF00 ?

Notation en Python(mais aussi C, Java...) La notation 0x27 signifie qu’on considère le
nombre qui admet l’écriture 27 en hexadécimal. La commande hex convertit de décimal en hexa.

Exercice 5. Expliquer comment obtenir l’écriture binaire d’un nombre à partir de son écriture
hexadécimale. Le faire sur l’exemple de n = 3E5D.

2 Les entiers à l’intérieur d’un ordinateur... et suivant les
programmes

En informatique, les variables ont un type qui désigne leur nature : ici, nous allons d’abord
parler du type entier integer 1.

1. Ce qui se prononce ’intedjer et pas integueur comme on entend souvent en France.

3

2.1 Le bit, l’octet

Le bit est l’unité d’information : il vaut 0 ou 1. Au début de l’informatique, l’information était
transmise par paquets de 8 bits : on appelle octet un mot de 8 bits. Avec des octets, on peut donc
écrire 28 = 256 suites de 0 et de 1, différentes, comme par exemple 01001011.

2.2 Le codage des entiers aujourd’hui : jusqu’à 64 bits

Les ordinateurs personnels les plus récents ont des microprocesseurs 64 bits, ce qui signifie que
l’information arrive par paquets de 64 bits.

En Python 2, mais aussi dans beaucoup de langages, les entiers standard (type int, en Py-
thon) sont codés sur 64 bits, c’est-à-dire encore 8 octets. (Si vous avez une machine 32 bits, ce
sera sur 32 bits. De même si vous avez une machine 64 bits, mais un système d’exploitation gérant
32 bits).

Cependant quand, on parle d’entiers en informatique, il s’agit d’entiers avec signe, qui peuvent
être négatifs, on va garder un bit (par convention le premier) pour coder le signe.

Définition (Bit de signe). Pour tous les entiers, le premier bit code le signe : 0 code les positifs,
1 code les négatifs. Ainsi, si les entiers sont codés sur 64 bits, les entiers positifs seront tous de la
forme 0b1 . . . b63

On dispose donc de 63 bits pour coder les entiers positifs d’où l’ :

Exercice 6. a) Quel est donc le plus grand entier de type int en Python 2 ?

b) Essayer en Python 2.7.

>> a=2**62

>> type(a)

puis
>> a=2**63

>> type(a)

Commentez. Puis faites la même chose en Python 3.

Avec Numpy, on peut spécifier davantage le type des nombres qu’on manipule. Voici un extrait
de la doc. :

Par exemple : on peut déclarer a=np.int8(77) pour fabriquer un entier, avec signe, codé sur 8
bits.

Exercice 7 (Les mauvais gag de manip. des entiers sur un nombre de bits donnés).

4

a) Que donnent les commandes : a=np.int8(120) b=np.int8(100) a+b

b) Expliquer la réponse du a).

c) A quoi sert donc ce type entier int8 (resp. int16 etc), s’il est si dangereux ?

2.3 Le cas des entiers négatifs : la méthode des compléments

2.3.1 Echauffement sur l’exemple des int8

On considère les entiers codés sur 8 bits, (les int8 de numpy) : pour les entiers positifs, le plus
grand est 01111111 = 27 − 1 = 127, car on n’oublie pas le bit de signe 0.

Une première idée, non retenue, de codage pour les négatifs : on aurait pu coder les
négatifs n ∈ ⟦−127,−1⟧ en mettant 1 devant l’écriture de ∣n∣ en base deux, mais ce n’est pas ce qui
a été choisi ! Une première raison évidente est qu’alors on aurait perdu de la place car on aurait eu
deux façons d’écrire 0. Mais la raison la plus importante est liée à l’addition.

En effet, avec un tel codage : 2 serait codé par 00000010 et -2 par 10000010, mais alors la
somme usuelle sur les nombres en binaires donnerait comme résultat 10000100 c’est-à-dire -4. Il
faudrait donc coder l’addition de manière différente suivant qu’on ajoute des positifs entre eux
(addition usuelle) ou des positifs avec des négatifs.

Il s’avère qu’il y a un moyen de contourner cette difficulté avec la :

Définition (La vraie convention de codage pour les négatifs). Si n est un entier

négatif, avec n ∈ ⟦−128,−1⟧, on le code, directement sur 8 bits, par c2(n)
def
= 28 − ∣n∣ =

256+n ∈ ⟦128,255⟧, écrit en binaire. En effet, le premier bit est alors forcément un 1 et donc
on sait qu’il s’agit du code d’un nombre négatif.

Exemple. Le plus petit entier négatif, −128 sera codé par 128 écrit en binaire, donc c2(n) =10000000.
C’est un mauvais exemple car −128 + 256 = 128. D’où l’

Exercice 8. Quel est le codage c2(−103) de −103 ?

2.3.2 Obtention commode du codage choisi pour les entiers négatifs

La notion de complément à 1 : Si à partir d’un int8, x, on en modifie les 8 bits en changeant
les 0 en 1 et les 1 en 0, on obtient un nombre c(x) qui s’appelle le complément à 1 de x.

Par exemple c(10011101)=01100010.
Par construction, il est évident qu’en notant + l’addition des nombres écrits en base 2, x+c(x)=
Cela donne une relation simple entre x et c(x), qu’on écrira : c(x)=

Application à l’interprétation du codage des entiers négatifs :
On a dit au § 2.3.1 que si n ∈ ⟦−128,−1⟧, on le codait par c2(n) = 28 + n ∈ ⟦128,255⟧.
Cette relation ressemble un peu à ce qu’on vient de dire pour le complément à 1. Précisément,

pour obtenir le codage de n ∈ ⟦−128,−1⟧ en int8, il suffit de faire les opérations suivantes :'

&

$

%

a) On considère l’entier naturel x = −(n + 1) ∈ ⟦0,127⟧, toujours en base deux,

b) puis on considère son complément à 1, c(x). On a alors le codage cherché :

c2(n) = c(−(n + 1))

Le codage c2 défini au § 2.3.1, s’appelle (bizarrement) le complément à deux (il vau-
drait mieux dire complément à 28 puisqu’au total on a obtenu 28 − ∣n∣).

Exemple Pour n = −103 = −01100111[2], on a x = −(−103+ 1) = (103− 1) = 01100110[2], puis avec
le complément à 1, on obtient : c(x) = 10011001[2], qui est bien c2(n) comme à l’exercice 8.

Exercice 9. Justifier que, d’une manière générale, la méthode donnée dans le cartouche ci-dessus
est valide, c’est-à-dire qu’on a toujours l’égalité : c2(n) = c(−(n + 1)).

5

2.3.3 Application au calcul des différences

Remarque 1. On a vu au chapitre 1 comment il est facile pour un ordinateur d’ajouter des
entiers positifs écrits en base deux (avec une porte logique par bit). Le problème que l’on posait au
début du § 2.3.1 était celui de traiter, avec la même opération +, l’addition d’un entier positif et
d’un entier négatif. On va voir que le codage des négatifs par les compléments à deux permet cela
efficacement.

Un petit exemple valant mieux qu’un long discours, avec des nombres à trois chiffres en base
deux, à chaque fois le codage machine est à droite (N.B. le codage machine est alors en complément
à 23).

On code les nombres sur trois bits 0,1,2,3 sont codés resp. par 000,001,010,011 et les négatifs
n = −4,−3,−2,−1 codés par les compléments à 23 comme 23+n écrit en base 2 donc 100,101,110,111.

1 001
+ −2 + 110

−1 111

−1 111
+ −2 + 110

−3 101

Notez qu’ici dans le résultat, on n’écrit pas le dernier 1 qui devrait apparâıtre à gauche par retenue.

La propriété générale est la suivante :

Proposition 1. Pour ajouter deux entiers a et b dans ⟦−128,127⟧ dont la somme reste dans cet
intervalle, il suffit de faire la somme de leurs représentations en int8. Si cette somme a un 9-ième
chiffre à gauche on l’enlève ! Le résultat obtenu est bien le codage machine de a + b.

Exercice 10. Prouver la propriété. Si vous avez du mal, lisez l’appendice A.

2.3.4 Cas des entiers en 64 bits

Pour les entiers codés sur 64 bits, on a la même convention de codage, avec le premier bit qui
donne le signe, et le même système de complément à deux pour les entiers négatifs : cette fois, si
n < 0, c2(n) = 264 + n.

L’intervalle des entiers codés sur 64 bits en Python est donc ⟦−263,263 − 1⟧.

3 Représentation binaire des réels : maths

3.1 A propos de l’écriture décimale

Nous avons l’habitude de l’écriture décimale, qui pour tout réel positif x est de la forme :

x = ar10r + ar−110r−1 + a110 + a0 + a−110−1 +⋯ + a−k10−k +⋯ (†)

Dans cette écriture, tous les ai sont entre 0 et 9, les . . . à la fin signifie que cette écriture peut
être infinie.

Par exemple 1/3 = 0,3333....
Les nombres qui admette une écriture finie de la forme (†) s’appellent les nombres décimaux.
Attention : les nombres décimaux ont aussi la particularité d’avoir une autre écriture décimale,

dite impropre, qui consiste à écrire une infinité de 9 à la fin.
Par exemple 1 = 0,9999.... oui égal et pas approximativement égal (cf. appendice maths sur les

limites) : une telle écriture d’un décimal avec que des 9 à la fin s’appelle écriture impropre.
A part ce problème des écritures impropres pour les nombres décimaux, l’écriture décimale d’un

nombre réel est unique.

6

3.2 Ecriture binaire (ou dyadique)

On a de même la :

Proposition 2. Tout réel positif x s’écrit :

x = bq2q +⋯ + b12 + b0 + b−12−1 +⋯b−k2−k +⋯

où les bi valent tous 0 ou 1, les (b−i)i∈N ne sont pas tous égaux à 1 à partir d’un certain rang
(écriture propre).

Définition. Les nombres qui admette une développement binaire fini sont appelés nombres dya-
diques. Ils sont de la forme a/2k où a est un entier.

3.3 Comment calculer la représentation binaire d’un nombre réel donné
par son écriture décimale ?

On considère un nombre réel positif x. Grâce aux méthodes du § 1.2, on sait trouver l’écriture
binaire de sa partie entière ⌊x⌋.

Pour trouver les coefficients b−k pour k > 0, qui apparaissent dans l’écriture de la prop. du § 3.2,
on multiplie x par 2k, ce qui donne :

2kx = ⋯ + b−k+12 + b−k + b−k−12−1 +⋯

En considérant le reste de la division euclidienne par 2 de ⌊2kx⌋, on obtient b−k.

Exercice 11. Déterminer l’écriture binaire des nombres qui s’écrivent en base dix sous la forme
3,25 et 0,1.

4 Représentation informatique des réels : les flottants

4.1 La représentation mantisse-exposant en base 10

Pour tous les nombres décimaux, on va convenir d’une écriture normalisée : considérons par
exemple le nombre décimal x = 1234,5678

On peut aussi l’écrire 123,45678.101 ou 12,345678.102 ou 1,2345678.103 ou 0,12345678.104 ou
12345,678.10−1 etc.

Parmi toutes ces écritures, on va choisir comme écriture normalisée : x = 1,2345678.103 et d’une
manière générale :

Définition. L’écriture normalisée, en base dix, d’un nombre décimal x strictement positif avec
une mantisse de longueur r + 1 et un exposant e ≥ 0 est une écriture de la forme :

x = ar, ar−1 . . . a0.10e

avec ∀ i ∈ ⟦0, r⟧, ai ∈ ⟦0,9⟧ et ar ≠ 0.
Dans cette représentation, la mantisse est le nombre arar−1 . . . a0.

Remarque 2. En informatique, la longueur de la mantisse va être fixée, ce qui bien sûr, va nous
obliger à considérer des valeurs approchées des nombres réels (même décimaux) s’ils s’écrivent avec
davantage de chiffres.

Définition (Notation “scientifique” en base dix). En Python la notation 23e17 signifie 23×1017.
L’ordinateur renverra l’écriture normalisée 2.3e18.

7

4.2 La représentation mantisse-exposant en base 2

C’est celle qui nous sera utile pour passer ensuite au vrai codage des nombres en machine à la
section suivante.

On a l’analogue exact de la définition précédente :

Définition (mantisse mathématique binaire sans signe). L’écriture normalisée, en base 2, d’un
nombre x > 0 avec une mantisse de longueur r+1 et un exposant e ∈ Z est une écriture de la forme :

x = ar, ar−1 . . . a0[2].2
e

avec ∀ i ∈ ⟦0, r⟧, ai ∈ ⟦0,1⟧ et ar ≠ 0, donc ar = 1.
Dans cette représentation, la mantisse mathématique binaire, sans signe, est le nombre

arar−1 . . . a0[2] = ar2r + ar−12r−1 +⋯ + a12 + a0.

Remarque 3. Souvent on convient de noter un tel nombre par le couple (m,e) où m est la mantisse
et e est l’exposant. Cependant, à ce stade, on n’a parlé que des nombres strictement positifs. Nous
aborderons le codage des négatifs et de zéro, ainsi que le codage des exposants, dans la section 4.3
suivante consacrée à la norme IEEE. La vraie mantisse machine sera en fait légèrement différente
de la mantisse mathématique de la définition précédente, notamment à cause d’un bit rajouté pour
le signe, et aussi parce qu’en binaire, pour les nombres strictement positifs, le nombre ar ≠ 0 est
forcément un 1, ce qui permettra de l’enlever du codage du nombre.

Pour l’instant, contentons nous de nous familiariser avec un :

Un bébé exemple : considérons les nombres strictement positifs que l’on peut représenter avec
une mantisse mathématique binaire m de longueur 3, et un exposant e ∈ ⟦−2,1⟧.

Exercice 12. a) Combien a-t-on de nombres strictement positifs de cette forme ?

b) Quels sont les entiers parmi ces nombres ?

c) Combien y-a-t-il de tels nombres dans [
1

2
,1[?

d) Même question dans [
1

4
,
1

2
[?

e) Quel est le plus grand et le plus petit parmi ces nombres ?

4.3 Le standard double précision sur les flottants : 64 bits, illustré en
Python

Les différences de représentation des nombres flottants d’un ordinateur à un autre obligeaient
au départ à reprendre les programmes de calcul pour les porter d’une machine à une autre. Pour
assurer la compatibilité entre les machines, une norme a été proposée par l’IEEE (Institute of
Electrical and Electronics Engineers) et ceci, dès 1985.

4.3.1 La définition du standard

Définition. Le format simple précision est codé sur 32 bits, et le double précision utilise 64 bits.
En Python comme de plus en plus partout, le format utilisé est le format double précision (même
si votre ordinateur est un 32 bits). Le signe est codé sur un bit, l’exposant sur 11 bits, et la mantisse
est codée sur 52 bits. On va voir plus précisément comment chacun est codé.

8

a) Le bit de signe S porte 0 pour les positifs stricts et 1 pour les négatifs stricts. On va voir
que le nombre zéro a 2 deux codages l’un avec 0 l’autre avec 1 comme bit de signe.

b) Le code E pour l’exposant : Les 11 bits d’exposants peuvent coder 211 = 2048 nombres.
Comme on veut coder aussi bien des exposants positifs que négatifs, plutôt que d’utiliser
un bit de signe, on va décaler les exposants. En notant e l’exposant mathématique, on code
E = e + 1023 en base deux (on parle d’≪ exposants biaisés ≫). On convient que les valeurs
mathématiques autorisées pour e sont dans ⟦−1022,1023⟧ et donc E ∈ ⟦1,2046⟧. Reste deux
valeurs spéciales disponibles pour E.

i) E = 0 codera les nombres très petits et notamment 0.

ii) E = 2047 codera le nombres trop grands traités comme infinis.

c) Le code M de mantisse machine :

i) Pour le nombre 0, on le code avec la mantisse machine M = 0 . . .0 et l’exposant machine
E = 0 réservé.

ii) Pour les nombres non nuls, on sait que la mantisse mathématique m = arar−1 . . . a0
commence par ar = 1. La mantisse machine M codera ar−1 . . . a00 . . .0 en complétant
avec des 0 pour avoir 52 chiffres si nécessaire.

Exemple. Le nombre 1, qui avait une mantisse mathématique m = 1 et un exposant e = 0 sera
codé par S = 0, E = 01111111111, M = 0 . . .0. Car E = e+ 1023 écrit en base deux et M s’obtient à
partir de m en enlevant le premier 1.

Exercice 13. Quel sera le codage machine des nombres suivants écrits en base deux : a = 1,0111.23,
b = −1,101.2−5 ?

Définition (Nombres machines normalisés). On appelle nombres machines normalisés le sous-
ensemble des nombres dyadiques qui peuvent être écrits exactement par le codage IEEE précédent.
C’est bien sûr un ensemble fini. Pour les autres nombres, les nombres machines serviront d’ap-
proximation.

4.3.2 Conséquence : nombre de chiffres significatifs

Exercice 14 (Nombres de chiffres significatifs). a) Suivant le format défini précédemment, on
peut coder exactement des nombres qui n’ont besoin ≪ que ≫ d’une mantisse mathématique
de 53 chiffres en binaires (53 = 52+1 car le premier 1 est omis dans la mantisse machine). On
dit qu’il y a 53 chiffres significatifs en binaire. Combien a-t-on alors de chiffres significatifs
en écriture décimale ?

b) Tester le programme suivant :

i=1

while 1.+10**(-i)>1.:

i=i+1

4.3.3 Le plus grand et le plus petit float : l’intervalle des nombres machines (nor-
malisés)

Exercice 15 (Dépassement de capacité : overflow, underflow). Exécutez les lignes suivantes
en Python et commentez le résultat par rapport à la déf. donnée au 4.3.1

a) 1e-323, 1e-324

b) 1e308, 1e309

Remarque 4. Comme expérimenté dans l’exercice précédent a), le code IEEE permet de gérer
des nombres plus petits que les nombres décrits au § 4.3.1. Ceci est possible par le fait que pour
l’instant avec le code d’exposant E = 0 . . .0, on n’a codé que le nombre 0. Les nombres codés avec
M ≠ 0 et E = 0 . . .0 sont dits sous-normaux, nous n’insisterons pas sur ce point.

2. contrairement au cas des entiers

9

Remarque 5. Toutes ces informations sont disponibles en Python, via le module sys qui contient
des informations systèmes.

from sys import *

on importe tout le contenu du module

float_info.max_exp

qui répond bien 1024, mais il faut comprendre que 1024 est le premier interdit.
Vous pouvez jouer avec les options de complétion de la commande float_info. pour apprendre

plus de choses.

Définition (L’intervalle des nombres machines et les nombres normalisés). D’après ce qui précède 3,
tous les flottants normalisés représentés en machines en Python, sont donc dans l’intervalle
[xmin, xmax[où xmin = 2−1022 et xmax = 21024.

Remarque 6 (Différence overflow/underflow). Si au cours d’un calcul avec des floats l’ordina-
teur tombe sur un nombre plus grand que xmax, on dit qu’il y a un overflow (dépassement), et le
calcul s’arrête, pour donner un infini. S’il tombe sur un nombre positif strictement plus petit que
xmin, le calcul continue, mais en donnant au nombre en question la valeur zéro (en fait, on peut
modifier la gestion de ces cas).

4.3.4 Format d’affichage des flottants en Python�
�

�
�

En python : on doit à chaque fois préciser le format qu’on veut pour l’affichage. La raison est
qu’il s’agit d’un langage de programmation : le code doit dire exactement le résultat qu’on
veut, indépendamment d’un réglage global.

Par exemple, en Python, avec le module math pour avoir pi :

>>> ’{:.22f}’.format(pi)

’3.1415926535897931159980’

Ici le .22f veut dire qu’on veut 22 chiffres après la virgule. Nous reviendrons sur l’utilisation
de la méthode format en Python.

Ceci donne un nombre π qui est différent de celui de Mathematica à partir de la 16eme
décimale ! Cela peut parâıtre étrange non ? On pourrait se dire que de toutes façons tous les calculs
numériques n’auront pas une précision de plus de 16 chiffres, donc cette erreur sur π n’affecterait
pas les calculs : c’est faux, à cause des phénomènes de ≪ cancellation ≫ que l’on verra plus tard en
calcul numérique. Alors, pourquoi avoir ≪ rentré ≫ un nombre π faux ? Voir l’exercice suivant :

Exercice 16 (L’explication du mystère sur π). Le nombre pi du module math est un float, codé
donc sur avec une mantisse binaire de 53 chiffres. Une façon de savoir exactement quel est le nombre
codé en machine pour pi est d’utiliser la commande pi.as_integer_ratio() qui répond

(884279719003555, 281474976710656)

Ce couple dit que le pi du module math est le nombre rationnel (884279719003555/281474976710656)

a) Obtenir l’écriture en base deux de chacun de ces deux nombres à l’aide de Python.

b) Conclure : quelle est la représentation (m,e) binaire de ce nombre pi ?

c) Aurait-il été possible de représenter pi plus précisément ? Question difficile !

3. en laissant de côté les nombres sous-normaux

10

A Excursion niveau collège : les compléments en base dix

En base dix, on parle de méthode des compléments pour désigner la méthode suivante :

Définition. Pour chaque chiffre i, son complément est par définition 9 − i.
Pour un nombre n à r chiffres par exemple n = 356291, on appelle complément de n le nombre

c obtenu en remplaçant chaque chiffre de n par son complément.
Sur l’exemple c = 643708.

L’intérêt d’introduire les compléments vient de la facile :

Proposition 3. Pour calculer la différence a − b de deux nombres entiers a et b, on peut écrire le
complément c de a, calculer la somme S = c + b puis écrire le complément C de S. Alors C = a − b.

Exemple Si on veut calculer 24563 − 15743. On écrit le complément de 24563 qui est c = 75436.
On calcule la somme b+ c = 75436+ 15743 = 91179. Le complément de la somme s’écrit 08820, c’est
la différence cherchée.

Exercice 17. Démontrez cette propriété.

11

