
T.P. 5 : algorithmes de dichotomie

1 Jeu de devinettes

1.1 Premier programme :

a) Ecrire une fonction devinette() qui fonctionne de la manière suivante :
● La machine choisit un nombre aléatoire entre 1 et 1000 qu’elle ne vous dit pas (le nombre mystère).

Vous pouvez pour cela utiliser la fonction randint du module random : randint(a,b) renvoie un entier
aléatoire dans ⟦a, b⟧.

● Elle vous demande de rentrer un nombre, (avec input) et elle vous dit si votre nombre est plus grand
ou plus petit que son nombre mystère et vous recommencez jusqu’à ce que vous ayez gagné. Elle vous dit
alors ≪ Bravo, vous avez gagné en (nombre de coups) coups ≫

b) Définir votre stratégie pour toujours gagner en moins de 10 coups.
Pourquoi 10 coups ?

1.2 Deuxième programme :

Vous échangez les rôles avec la machine. Là c’est plus intéressant car vous devez implémenter dans la
machine la stratégie que vous avez définie au paragraphe précédent, pour qu’elle gagne toujours en moins
de dix essais.

2 La dichotomie en analyse pour la recherche d’un zéro
d’une fonction continue

Hyp. On se donne une fonction f ∈ C([a, b],R) explicite telle que f(a).f(b) < 0. Le T.V.I. dit qu’il existe
un c ∈]a, b[tel que f(c) = 0. Le problème est d’avoir une approximation numérique de c.�� ��Je voudrais insister sur les deux points de vue complémentaires : maths et info.

2.1 Présentation mathématique (pas de travail à faire, lire seulement !)

A partir de l’hyp. ci-dessus,
�� ��on va construire deux suites (an) et (bn) :

a) Définition par récurrence :

● Initialisation : on pose a0 = a et b0 = b.

● A l’étape n, on suppose qu’on a défini an et bn : on considère m = (an + bn)/2.
— Si f(an).f(m) > 0 on pose an+1 =m et bn+1 = bn.
— Si f(an).f(m) ≤ 0, on pose an+1 = an et bn+1 =m.

b) Propriété évidente des suites (an) et (bn) ainsi définies :

(i) par construction chaque intervalle [an+1, bn+1] est embôıté dans [an, bn] (avec un borne com-

mune), et de longueur moitié : bn+1 − an+1 =
1

2
(bn − an)

(ii) Par réc. immédiate : ∀n ∈ N, bn − an = 1

2n
(b0 − a0) =

b − a

2n
.

(iii) La déf. précédente ne met pas à part le cas où f(m) = 0. En fait si par hasard si f(m) = 0 à
l’étape n, alors bn+1 =m et pour tout k ≥ n + 1, bk =m.

(iv) Par T.V.I. à chaque étape le segment [an, bn] contient au moins un zéro de f . Du point de
vue de l’approximation numérique, an et bn sont donc des valeurs approchées d’un tel zéro à
(b − a)/2n près et leur milieu m = (an + bn)/2 à (b − a)/2n+1 près.

1

2.2 Version informatique�

�
	En informatique, les valeurs successives des suites (an) et (bn) sont stockées toujours dans les

mêmes variables informatiques a et b dont le contenu est modifié au fur et à mesure.

a) Ecrire une fonction en Python, qui prend comme argument : une fonction f, des réels a et b, et
une précision epsilon, qui renvoie :
— un message d’erreur si f(a).f(b) > 0
— sinon, un zéro de f dans [a, b] à la précision ε, calculé par la méthode de dichotomie.

b) Appliquer la fonction précédente à f = sin, a = 3, b = 4 et ε = 10−7.�

�
	Attention : ne JAMAIS faire de test d’égalité avec des flottants ! Un flottant ne représente un réel

qu’à une certaine précision près ! Cela n’a pas de sens de dire qu’on tombe ≪ pile ≫ sur un zéro.

3 Algorithme de recherche dichotomique dans une liste triée

Au T.P. sur les listes, on a écrit des algorithmes qui renvoient, pour une liste L et un élément a, à quel
indice apparâıt a dans L (et donc font la même chose que la méthode index sur les listes).

Ici, on fait l’hypothèse beaucoup plus forte que L est une liste d’entiers déjà triée dans l’ordre croissant.
L’idée est la suivante : on coupe le tableau en deux par le milieu et on détermine si la valeur a que

l’on cherche est dans la moitié gauche ou la moitié droite, en la comparant simplement à la valeur centrale.
Puis on répète le processus sur la portion sélectionnée.

Exercice à faire : Programmez en Python une fonction recherche_dichoto qui prend comme
arguments une liste L d’entiers, déjà triée dans l’ordre croissant, et un entier a, et qui renvoie un indice i
tel que a apparâıt dans à l’indice i dans L ou bien renvoie None si a n’apparâıt pas.

Indication – : On pourra utiliser deux variables g et d pour gauche et droite qui délimitent la portion
du tableau dans laquelle a doit être cherchée. Ainsi, on initialise g=0 et d=len(L). Ensuite on joue sur
m=(g+d)//2 (pourquoi avec un double slash) ?

Suite de l’exercice : Justifier que si L est de longueur n, le nombre N d’étapes (tours de boucles)
nécessaires que que l’algorithme termine est majoré par log2(n) (ou log2(n+1)).Comme le nombre d’opérations
(tests d’égalités ou d’inégalités) est constant à chaque tour de boucles, on dira que le programme a un
temps de calcul logarithmique en la taille des données.

4 Une alternative à la dichotomie pour la recherche de zéros
d’une fonction : méthode de la fausse position

Dans cette méthode, on note A = (a, f(a)), B = (b, f(b)) et on cherche le point d’intersection (x0,0)
du segment [A,B] avec l’axe des abscisses. On sait le calculer via l’équation de (AB). On peut considérer
x0 comme une première approximation du zéro de f que l’on cherche.

Ensuite, on itère le procédé en l’appliquant sur l’intervalle [a, x0] si f(x0) est du même signe que f(b)
et sur [x0, b] sinon : on obtient un nouveau point (x1,0) (cf. la figure ci-dessous).

Reprendre les questions du § 2 en remplaçant la méthode de dichotomie par cette méthode.
Attention : on pourra s’interroger sur le test d’arrêt !

2

