TP3 : premieres manipulations de boucles et de listes

1 Un savoir faire essentiel : manipuler les boucles for

a) Ecrire un code qui affiche dix fois le mot python de deux maniéres : avec une boucle for et
sans boucle for (en pensant aux opérateurs vus sur les chaines de caracteres).

b) Faire afficher tous les entiers pairs de 0 & 20.
c) Faire calculer ¥; i pair,0<i<100 -

100
d) Faire de méme le calcul de [i.

i=1

2 Fabriquer une liste a I’aide d’une boucle

Supposons par exemple qu’on veuille fabriquer une liste L qui contient tous les i pour i € [0, 100]
comment faire ?
a) Idée 0 (qui ne marche pas!) L’idée serait d’utiliser le code suivant :

for i in range (100):
L[i]l= ix*x2

Que pensez-vous du résultat ? Eh oui, c’est triste, mais c’est ainsi : les commandes L[i] ne peuvent
que modifier 'entrée d’indice i d’une liste qui a déja une entrée d’indice i. On ne peut pas créer une liste
comme cela en Python *!

Ne jamais commencer la création d’une liste avec des L[i]= qui ne sont pas que des modifi-
cations d’une liste L qui doit déja exister.

b) Idée 1 : la commande +, en partant d’une liste vide.

On rappelle que [a,b,c]+[d] renvoie [a,b,c,d]. Ainsi []+[a] renvoie...

Quand on a calculé des sommes au § 0, on est parti d'une somme vide. De méme ici, on peut
partir d’une liste vide pour fabriquer une liste. Fabriquer de cette maniere la liste L qui contient
tous les 72 pour i € [0,100] avec un + & chaque étape.

c) Idée 2 : ou ’on rend possible la méthode qui ne marchait pas & ’idée 0, grace
au préformatage

On rappelle qu’on a un opérateur * sur les listes. Par exemple [0]*3 donne ...

Commencer par fabriquer une liste de 0 de la bonne taille, puis une fois que cette liste existe
vous pouvez en modifier les entrées.

d) Idée 3 : la méthode append.

La syntaxe d’'une méthode en PYTHON est tres différente de celle des fonctions que nous avons
vues pour l'instant. Par exemple si L=[2], pour passer a L=[2,3], on tapera :

L=[2]
L.append(3)

A vous de jouer.

Certains penseront : a quoi bon ce append alors que le + va bien ? On va voir plus loin... mais
noter la syntaxe particuliere des méthodes. Noter aussi ici que l'objet L (qui est une liste)
est modifié par la méthode sans avoir a faire une affectation. Ne pas taper L=L.append (3)

e) Idée 4 : La fabrication de listes par compréhension nous verrons cela plus tard.

1. Cela marche dans d’autres langages comme Javascript...

3 Introduction a I’écriture de fonctions

a) Utiliser une fonction ?

On sait déja utiliser des fonctions de PYTHON : par exemple, puisque ce T.P. parle de listes,
si on a une liste L=[1,4,5,2,16,3], on a, en PYTHON, une fonction max qui renvoie la valeur
maximale des entrées de L. Essayez de 'utiliser.

b) Fabriquer une fonction ?

Un des buts de ce T.P. est de programmer des fonctions & vous. Pour cela, il faut introduire la
syntaxe nécessaire a la définition d’une fonction. Nous reprendrons tout cela en cours ensuite !

On se contente ici d’un exemple. On a vu en cours comment faire calculer la somme des entiers
de 1 & n si n est une valeur en mémoire.

n=12 def Somme(n):

S=0 5=0

for i in range(n+1): Considérons alors le code suivant : for i in range(n+1):
S=S+i S=5+1

print(S) return S

Le premier code a été incorporé apres la premiere ligne, mais indenté. Une fois ce nouveau
code exécuté, vous pouvez taper Somme (14) dans le shell et vous aurez la somme des entiers de
1 & 14 comme valeur de retour. Nous reviendrons sur le return en cours : ce qui suit le return
est la valeur (ou les valeurs) renvoyée(s) par la fonction. Le mot clef return n’est & utiliser qu’a
I'intérieur de la définition d’une fonction.

c) Exercice : Reprendre le script que vous avez fait pour les années bissextiles et fabriquer
une fonction bissextile qui prend comme argument une variable que vous appellerez annee et
renvoie True ou False suivant que I’année est bissextile ou pas. Autrement dit; une fois votre
code exécuté, vous devrez pouvoir taper bissextile (2000) dans le shell, et il devra vous répondre

4 Comment fabriquer une liste de nombres aléatoires pour
nos tests

A T'aide de from random import randint, on dispose de la fonction randint qui fabrique un
entier aléatoire.

Précisément randint (a,b) renvoie un entier aléatoire dans [a,b].

Fabriquer alors une fonction liste_alea qui prend un entier n comme entrée et qui fabrique
une liste de n nombres entiers aléatoires entre 1 et 1000.

5 Maximum dans une liste ou un tuple :

[Un algorithme fondamental a comprendre]

a) Ecrire une fonction mon_max qui prend en entrée une liste ou un tuple, qu’on notera L, dont
on suppose que les entrées sont des nombres, et qui retourne la plus grande de ces entrées.

Idée : créer une variable M qu’on initialise avec la valeur de la premiere entrée de la liste.
Ensuite, on parcourt la liste en comparant chaque entrée a M et si 'entrée L[i] qu’on examine est
plus grande que M, on met la valeur de L[i] dans M.

A la fin M doit contenir la valeur maximum des entrées de la liste.

b) Améliorer la fonction du a) pour qu’elle renvoie deux valeurs : la valeur du max. et un indice
ol ce max. est atteint.

6 Programmer le del

a) On a parlé en cours de la commande del (avec sa syntaxe un peu bizarre en python) : Si
L=[4,3,5,4], que fait del(L[2]) ?

b) On a parlé en cours des commandes de slicing : par exemple pour L=[4,3,5,4] que donne
L[1:3]7

Mais on doit aussi dire qu'on peut modifier non seulement une tranche d’une liste, méme en
changeant sa taille. Par exemple pour la liste précédente, que donne L[1:3]=[2] 7

¢) En déduire Iécriture d’une fonction MonDelAMoi qui prend comme argument une liste L et
un numéro d’entrée i, donc qu’on utilisera avec la commande MonDelAMoi (L,i) et qui modifie L
pour avoir le méme résultat que del(L[i]).

7 Davantage de méthodes sur les listes :

L’aide de python (quand on I’a, notamment dans le terminal) donne les détails suivants sur les
méthodes qui s’appliquent aux listes :

index(...)
L.index(value, [start, [stop]]) -> integer -- return first index of value.

Raises ValueError if the value is not present.

insert(...)

L.insert(index, object) -- insert object before index
pop(...)
L.pop([index]) -> item -- remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

remove(...)
L.remove(value) -> None -- remove first occurrence of value.
Raises ValueError if the value is not present.

reverse(...)
L.reverse() -- reverse *IN PLACE*

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| sort(...)
| L.sort (key=None, reverse=False) -> None -- stable sort *IN PLACEx
Travail & faire : Programmer des fonctions & vous qui font la méme chose que ces méthodes. Il est
utile de commencer par celle qui remplace index, que vous pouvez appeler mon_indice par exemple.

La regle du jeu est que vous pouvez & chaque étape utiliser toutes les fonctions maisons que vous avez

déja programmeées. Il est intéressant aussi de savoir ce qu’on fait par exemple pour mon_indice, si I’entrée
cherchée n’apparait pas.

8 Comparaison de la rapidité de deux fonctions : le module
time
a) Que fait le petit script suivant ?

from time import clock

def duree(fonction ,n=100):
debut=clock ()
fonction(n)
fin=clock ()
return fin-debut

Remarque : le second argument de duree est un argument optionnel : si on ne I’entre pas
i.e. qu'on entre seulement duree(f) ou f est une fonction, alors n=100 par défaut. En revanche
duree (f,1000) donnera n=1000.

b) Retour sur le 1) : y-a-t-il une différence entre les techniques du 1.b), du 1.c) et du 1.d).

Tester la durée des différentes méthodes vues au 1), pour constituer la liste des sin(i) pour
i € [0,1000]. Pour appliquer la fonction durée, on pourra fabriquer des fonctions renvoyant cette
liste des sin(i) pour i € [0, 1000.

