
T.P. 2 : Premiers pas avec Python et pyzo.

1) Pour lancer Pyzo

A partir du bureau Debian ouvrir un Terminal. Dans le Terminal, taper pyzo & pour lancer
Pyzo. Rappel du T.P. 1 : à quoi sert le & ?

Pyzo est l’interface qui va nous permettre d’écrire des programmes en python et de visualiser
agréablement leur résultat. Lorsque vous l’installerez chez vous, vous devrez aussi installer une
distribution Python.�� ��Attention : pyzo est lancé à partir du Terminal, si vous fermez le terminal, vous fermez pyzo.

2) Présentation des zones de travail de Pyzo.

a) Le shell est au dessus (si jamais il est de côté, on peut le bouger en cliquant sur le haut
de la fenêtre de shell). Il permet de rentrer des instructions en ligne de commande : il a un
prompt >>>, qui, un peu comme dans le terminal, attend votre commande. Essayez de faire
un calcul dans le shell.

b) En dessous la fenêtre fichier (si elle n’existe pas Ctrl-N ou menu déroulant Fichier puis
Ouvrir). Elle permet de manipuler un fichier texte, qui contiendra le code qu’on exécutera
dans un second temps. Essayer de taper : print("Hello world") dans la zone de fichier,
puis d’exécuter ce programme. (Menu Executer ou Run puis apprendre le raccourcis clavier).

c) Enregistrer votre premier fichier avec Ctrl-S : en indiquant le chemin vers votre clef usb
perso. Penser au Ctrl-S régulièrement, c’est un bon ami.

3) Expérimentation sur les entiers, les flottants, et un peu de châınes de
caractères

a) Les entiers longs : comment trouver le nombre de chiffres d’un entier long écrit à l’écran,
par exemple 7 ∗ ∗(1000) ? Rappelons que la double astérisque ** sert à faire une ? On
pourrait le faire par une opération mathématique 1, mais ici, une simple manipulation in-
formatique suffit.

On stocke le résultat dans une variable a, qu’on transforme en châıne de caractères via la
commande b=str(a) puis on demande la longueur de b via la commande len(b). Essayez !

b) La division des flottants et la division euclidienne :

i) Une précaution préliminaire :�� ��Toujours vérifier que votre shell est en Python 3 : première ligne du shell

Sinon changer de shell (vu en cours).

ii) Taper a=4/2 sans appuyer sur return (entrée). Saurez-vous prévoir quel est le type de
a ? Vérifiez !

iii) Que donne 4//3 et 4//2 ? Expliquer.

iv) Tester et expliquer ce que fait le programme suivant :

a=input(’Entrer un entier’) # Affiche le message, attend une réponse de l’utilisateur,

et stocke la réponse dans a

print(type(a))

a=int(a)

if a%2==1 :

print(’Oui’)

else :

print(’Non’)

1. Typiquement avec un logarithme... je vous laisse y réfléchir...

1

c) Pour ne pas confondre les noms de variables avec les châınes de caractères

Tapez d’abord dans le shell >>> abc="trois lettres".

Essayez de prévoir la réponse du shell Python aux entrées suivantes et vérifiez votre réponse !

i) >>> print(abc)

ii) >>> print(’abc’)

iii) >>> print(abc*3)

iv) >>> ’1’+’2’+’3’

v) >>> 1+2+3

vi) >>> abc+’d’

vii) >>>abc+d

4) Jouons encore un peu avec la commande input

Nous l’utiliserons peu par la suite, elle sera remplacée par l’usage de fonctions mais pour
aujourd’hui elle nous permettra de faire notre premier programme. Cette commande input permet
à la fois d’afficher un message et de recevoir une réponse de l’utilisateur : pour cela, on faut stocker
le résultat de input dans une variable.

Par exemple, si un programme commence par :

nombre=input(’Entrez un nombre et moi je vais lui ajouter 2’)

la valeur rentrée par l’utilisateur sera stockée dans la variable appelée ici nombre

comment compléter ce programme pour qu’effectivement l’ordinateur nous affiche le nombre plus
deux ?

Attention, il y a un petit piège, en cas d’erreur.. lisez le message d’erreur...

5) Introduction aux structures conditionnelles : if ... elif .. else

Un point sur la syntaxe :

if condition1: # le : a valeur de then

instruction

instruction # toutes les instructions indentées sous la condition 1

#sont exécutées si condition1 est vraie.

elif condition2: # le elif est pour else if.

instruction

else :

instruction

a) Expliquer le différence de comportement entre les deux programmes suivants :
a=17

if a==17 :

print("ok")

a=0

if a<17:

print("trop petit")

else :

print("trop grand")

a=17

if a==17 :

print("ok")

a=0

elif a<17:

print("trop petit")

else :

print("trop grand")

b) Ecrire un programme qui demande d’entrer un nombre puis qui affiche gagné si ce nombre est
égal à 17, pas assez si le nombre est strictement inférieur et trop s’il est supérieur strictement.

c) Quelques ≪ simplifications ≫ :
● Compte tenu de vos grandes connaissances en logique après le cours de maths sur le et

et le ou, trouver une version plus efficace du test suivant :
if (a<b) or ((a>=b) and (c==d)) :

● Un élève a écrit le code suivant :

2

if b>a:

a=a+1

else :

a=a
Que lui suggéreriez-vous ?

6) Exercice sur les années bissextiles

Les années bissextiles sont les années multiples de 4 sauf les années divisibles par 100 (les années
séculaires) qui ne sont pas divisibles par 400. Ainsi 2000 était bissextile, mais 1900 ne l’était pas
et 2100 ne le sera pas non plus.

Faire deux programmes qui demandent de rentrer une année et répondent si elle est bissextile
ou non :

● d’abord avec des if ... elif.. else

● puis seulement avec des or and en fabriquant alors un booléen qui répond True ou False

comme il se doit.

7) Un exemple où on introduit les boucles while :

7.1. Un while pour être poli

Que fait le programme suivant ?

reponse=""

while reponse!="bonjour":

reponse=input("Dis moi bonjour ")

print(’bonjour à toi aussi’)

7.2. Un jeu de Nim

Le jeu de Nim est un jeu qui se joue avec des allumettes et deux joueurs qui jouent à tour de
rôle.

Il y a ici 2 qu’un seul tas de N allumettes et chaque joueur doit prendre à chaque tour 1,2 ou
3 allumette(s) et celui qui prend la dernière allumette perd.

(i) Justifier que si un joueur a devant lui un tas avec 4,3, ou 2 allumettes avant de jouer, il
gagne.

(ii) Définir une stratégie qui montre que si un joueur a, à un certain tour, avant de jouer, un
nombre N d’allumettes qui n’est pas de la forme 4k + 1, il est sûr de gagner avec cette stratégie.

(iii) Mettre en oeuvre cette stratégie en programmant, à l’aide d’une boucle while, et des
input pour le jeu de l’humain, une partie où au départ il y a 17 allumettes, l’humain commence
et l’ordinateur gagne à coup sûr.

2. car il y a des variantes

3

TP 2 : solutions
3) Expérimentations sur entiers, flottants, châınes de caractères
a) Comprendre la différence entre les variables :
a=7*7 où a est une variable dont la valeur est l’entier 49, et b=str(a) où b est une variable dont la

valeur est la châıne de caractères "49". En sens inverse avec int(b) on refabrique un entier.
Remarque : pour une chaine de caractères L contenant un flottant, la commande int ne sera pas

efficace.
3b) (ii) En Python 3, 4/2 renvoie le flottant 2.0. Le / renverra toujours un flottant.

(iii) 4//2 renvoie l’entier quotient de la division euclidienne. Ainsi 4//2 renvoie 2 et 4//3 renvoie 1.

(iv) Bien retenir aussi le % qui renvoie le reste de la division euclidienne très utile en informatique. Ici
a%2==1 signifie que a est impair alors que a%2==0 signifie que a est pair.

Pour le programme donné :

a=input(’Entrer un entier’)

a=int(a)

if a%2==1 :

print(’Oui’)

else :

print(’Non’)

La première ligne affiche ’Entrer un entier’ puis
attend une réponse, la réponse est stockée à
l’intérieur d’une chaine de caractères, appelée
a. La seconde ligne transforme la châıne de ca-
ractères en entier. Puis est affiché ’Oui’ si a est
impair et ’Non’ sinon.

Remarque : dans le code précédent on peut remplacer les 4 lignes du if par : print(a%2==1) ce qui
est plus concis bien sûr mais surtout, à terme, on préférera stocker les résultats dans une variable, par
exemple ici un booléen R=(a%2==1).

(vi) Petite excursion en Python 2 :
En Python 2, l’opérateur / ne donne pas le même résultat suivant qu’il s’applique à des int ou des

float.
Ainsi pour des entiers il renvoie le quotient de la division euclidienne : ainsi 5/2 renvoie 2

Si on fait float(5/2), l’ordinateur calcule d’abord 5/2 qui donne 2, puis le transforme en float ce qui
donne 2.0.

Ce n’est bien sûr pas le résultat de la division des floats, qu’on obtiendrait avec float(5)/float(2)

ou 5./2.

4) Le programme qui fait +2

a=input("entrez un nombre et je vais lui ajouter 2")

a=int(a)

print("En ajoutant 2, on obtient",a+2)�

�

�

�
5) a) Il faut penser chaque structure if, elif, else comme un seul bloc où (au plus) une seule
des conditions sera vérifiée et donc (au plus) une série d’instructions sera exécutée. En revanche
avec deux if à la suite, même si les conditions exprimées semblent s’exclure, il est possible que les
instructions exécutées par le premier if rendent le second if possible. C’est le cas dans le premier
exemple suivant :

a=17

if a==17 :

print("ok")

a=0

if a<17:

print("trop petit")

else :

print("trop grand")

Ici comme à la ligne 2, la condition a==17

est vérifiée, les instructions des lignes 3 et 4
s’exécutent, a prend la valeur 0 et donc ce qui
dépend de la condition if a<17 va aussi être
exécuté. L’affichage sera donc :

ok

trop petit

En revanche avec le elif pas de pb.
a=17

if a==17 :

print("ok")

a=0

elif a<17:

print("trop petit")

else :

print("trop grand")

L’affichage sera seulement

ok

4

b) Programme très simple, juste pour travailler encore le input en plus des if

a=int(input("entrez un nombre"))

if a==17:

print("gagné")

elif a>17:

print("trop")

else :

print("pas assez")

c) Quelques ≪ simplifications ≫ :
● Pour simplifier le test :
if (a<b) or ((a>=b) and (c==d)) :

on peut remarquer que par distributivité du or ce test est est équivalent au (pas plus simple) :
if ((a<b) or (a>=b)) and ((a<b) or (c==d)) :

Mais (a<b) or (a>=b) étant toujours vrai, on peut l’enlever du and et donc la condition se simplifie

en :
�� ��if (a<b) or (c==d)

d) Un élève a écrit le code suivant :
if b>a:

a=a+1

else :

a=a

Que lui suggéreriez-vous ?
�� ��Réponse : enlever le else : a=a qui ne fait rien d’intéressant !

6) Bissextile
On présente deux méthodes ≪ extrêmes ≫, il est possible de combiner bien sûr if else et and, or

● (M1) Avec les if : noter l’intérêt de l’ordre dans lequel les conditions apparaissent
annee=int(input(’Entrez une année’))

if annee%400==0:

print("bissextile")

elif annee%100==0:

print("non bissextile")

#N.B. dans ce cas annee est divisible par 100

mais PAS par 400 grâce au elif.

elif annee%4==0:

print("bissextile")

#dans ce cas annee n’est divisible

ni par 400 ni par 100 (autrement dit par 100)

mais est divisible par 4

else :

print("non bissextile")

Si on préfère les conditions négatives, on va dans l’ordre inverse :
annee=int(input("Entrez l’année de votre choix"))

if annee%4 !=0:

print("cette année n’est pas bissextile")

elif annee%100 !=0:

print("cette année est bissextile")

elif annee%400 !=0:

print("cette année n’est pas bissextile")

else:

print("cette année est bissextile")

● (M2) Avec les and, or :
annee=int(input("Entrez l’année de votre choix"))

test=(annee%4==0) and ((annee%100!=0) or (annee%400==0))

print(test)

7.1. Le programme répète l’affichage de ”Dis moi bonjour ” tant que l’utilisateur ne tape pas exactement
bonjour

7.2. Jeu de Nim : (i) Si le juste à N ∈ {4,3,2} allumettes avant de jouer, il en prend N − 1 (ce qui
est permis puisque N − 1 vaudrait 3,2 ou 1) et l’autre joueur n’a aura qu’une devant lui et perd.

(ii) Au départ notre joueur a devant lui un nombre N0 = N d’allumettes tel que N /≡ 1 [4].
Notre joueur va prendre un nombre a d’allumettes tel que N − a ≡ 1 [4].

5

Précisément si on note r = N%4 le reste de la division euclidienne de N par quatre, notre joueur prend :
● si r = 0, a = 3 allumettes car alors N − a ≡ −3 ≡ 1 [4]
● si r = 3, a = 2 allumettes car alors N − a ≡ 1 [4]
● si r = 2, a = 1 allumettes car alors N − a ≡ 1 [4].
A ce stade le joueur adverse a N ′ allumettes devant lui où N ′ ≡ 1 [4].
Il va jouer et quel que soit sa façon de jouer, il nous laissera un nombre N1 d’allumettes tel que

N1 /≡ 1 [4].

N=17

while N>1:

print("Il y a ",N,"allumettes")

coup_humain=int(input("Humain,combien en prends-tu ?"))

N=N-coup_humain

r=N%4

if r==0:

a=3

elif r==2:

a=1

elif r==3:

a=2

print("Moi, j’en prends",a)

N=N-a

print("Il reste seulement une allumette")

print("Tu es obligé de prend la dernière, j’ai gagné")

6

