
Compte rendu du T.P. 3, suite

4 Comment fabriquer une liste de nombres aléatoires pour
nos tests

a)Savoir importer la fonction et consulter l’aide :

from random import randint

help(randint)

Help on method randint in module random:

randint(a, b) method of random.Random instance

Return random integer in range [a, b], including both end points.

On comprend que : randint(a,b) fabrique un nombre entier (pseudo)-aléatoire dans ⟦a, b ⟧.

b) Fabriquer alors une fonction liste_alea qui prend un entier n comme entrée et
qui fabrique une liste de n nombres entiers aléatoires :

La méthode est la même qu’au §2 pour fabriquer une liste de n éléments : (si n est bien défini) :

L=[]

for i in range(n):

L.append(randint(1,1000))

Mais ici on demande en plus de fabriquer une fonction, donc on met ce code dans la définition
d’une fonction, ce qui donne :

def liste_alea(n): # le n est l’argument de la fonction,

il sera rentré par l’utilisateur à chaque appel de la fonction

L=[]

for i in range(n):

L.append(randint(1,1000))

return L

5 Maximum dans une liste ou un tuple :�

�

�

�

Le but est ici de comprendre comment trouver le max. d’une liste en parcourant la liste.
C’est notre premier programme de manipulation sur les listes. Il est totalement hors-sujet
d’y utiliser des outils plus forts sur les listes comme le tri. En fait dans tout ce qui suit,
quand on demande de programmer une opération sur les listes, les seuls outils permis seront
les commandes d’extractions L[i] ou L[i ∶ j] et les outils que vous avez déjà développés.

a) Fonction mon_max :
Première méthode : en parcourant la liste à l’aide d’une boucle for sur les indices

def mon_max(L):

"Renvoie le max. d’une liste ou d’un tuple"

M=L[0]

for i in range(len(L)):

if L[i]>M:

M=L[i]

return M

Deuxième méthode : en parcourant à liste à l’aide d’une boucle for sur les valeurs

1

def mon_max(L):

"Renvoie le max. d’une liste ou d’un tuple"

M=L[0]

for a in L: # le compteur a parcourt les valeurs dans la liste L

if a>M:

M=a

return M

b) Amélioration

def max_mieux(L):

"renvoie la valeur et un indice du max. d’une liste ou d’un tuple"

M=L[0]

i_max=0

for i in range(len(L)):

if L[i]>M:

M=L[i]

i_max=i

return (M,i_max)�

�
	Cet algorithme d’obtention de max et de imax est INCONTOURNABLE : vous le re-

trouverez dans la plupart des épreuves écrites de concours sous une forme ou une autre...

6 Programmer le del

a) On a parlé en cours de la commande del : Si L=[4,3,5,4], que fait del(L[2]) ?
Réponse : elle modifie la liste L en enlevant la seconde entrée donc après del(L[2]), on aura

dans L la liste [4,3,4].
b) A l’aide de la technique vue en cours pour extraire une partie d’une liste (slicing) fabriquer

votre propre fonction efface qui fait la même chose que del, en prenant en entrée deux arguments
L et i.

Une méthode qui ≪ marche presque ≫ :

def mon_del(L,i):

L=L[0:i]+L[i+1:]

return L

Pourquoi ne fait-elle pas exactement ce que fait le del ? car si la valeur de retour est bien
correcte, la liste L sur laquelle on appelle la fonction ne sera pas modifiée !

Voir par exemple :

>>>L=[0,1,2,3,4]

>>>mon_del(L,2)

[0,1,3,4]

>>>L

[0,1,2,3,4] �� ��On comprendra cela en cours avec le cours sur les listes (chap 5) . !

Une méthode qui ≪ marche vraiment ≫ :

def mon_delvrai(L,i):

L[i:i+1]=[] # cette fois pas de L= en local, mais une modification du L global..

on verra cela.

2

7 Davantage de méthodes sur les liste :

7.1 Commentaires sur les aides données dans l’énoncé du T.P.

: ● index : ma_liste.index(45) retourne le premier indice où apparâıt le nombre 45 dans
ma_liste, s’il apparâıt, sinon donne une erreur. Ce que l’aide met entre crochets est des arguments

optionnels qu’on peut rajouter : pour dire qu’on ne regarde que les indices entre .. et ...
Ces crochets ne doivent pas être entrés quand on appelle index. Par exemple si on veut chercher

l’indice de la valeur 45 pour les indices entre 10 et 17 dans ma_liste on écrira ma_liste.index(45,10,17)

● remove : ma_liste.remove(45) enlève la première entrée de la liste où apparâıt le nombre
45.

● pop : ma_liste.pop(2) : fait deux choses. Elle retourne l’entrée ma_liste[2] et modifie
ma_liste en enlevant cette entrée.

Ainsi par exemple si L=[2,3,4,5]. Après a=L.pop(2), on a a=4 et L=[2,3,5]
● count : ma_liste.count(34) renvoie le nombre de fois qu’apparâıt la valeur 34 dans ma_liste
● reverse : ma_liste.reverse() modifie ma_liste en la transformant en la liste où les valeurs

sont dans l’ordre inverse.
Si L=[1,2,3] et qu’on fait L.reverse(), on obtient L=[3,2,1]
Rappel : les méthodes associées à une classe (ici la classe list) sont des fonctions parti-

culières qui ne s’appliquent qu’aux objets de la classe, ici donc qu’à des listes. Leur syntaxe est
particulière : nom_de_notre_liste.nom_de_la_methode(argument_suppl). Comme une liste est
un objet mutable, elles peuvent modifier la liste à laquelle elles s’appliquent.

b) Version maison des méthodes sur les listes :

7.2 Versions maisons de index

En ne tenant pas compte des arguments optionnels donnés par l’aide, une première version que
j’ai vue en T.P. est :

def mon_index(L,a):

"renvoie le premier indice où apparaı̂t la valeur a dans L \

et dit ’y’a pas’ sinon "

for i in range(len(L)):

if L[i]==a:

return i

return "y’a pas"

bien comprendre que return fait terminer la fonction....

#donc la derniere ligne

ne s’execute que si on n’a pas trouvé d’indice

ce rôle du return a été souligné au chapitre 3, I sur les fonctions.

Noter que la réponse ”y’a pas” n’est pas exactement ce que fait la vraie commande index. La
vraie commande index provoque une erreur.�� ��Pour faire détecter une erreur : raise ValueError(’Message d’erreur’)

D’où le deuxième script :

def mon_index(L,a):

"renvoie le premier indice où apparaı̂t la valeur a dans L \

et lève une erreur sinon"

for i in range(len(L)):

if L[i]==a:

return i

raise ValueError("indice non trouvé")�

�
	La connaissance de ces mots clefs ValueError n’est PAS exigible pour les concours.

Dans les épreuves de concours, vous n’aurez pas à ≪ gérer les erreurs ≫.

3

7.3 Version maison de index avec une boucle while

def monindice(L,a):

i=0

while i<len(L) and L[i]!=a: # attention à l’ordre des deux conditions.

i=i+1

return i

Cette fonction renvoie le premier indice i tel que L[i]==a soit vrai, et s’il n’en existe pas va
renvoyer la dernière valeur prise par i c’est à dire len(L).

Comparons à ce qui se passe pour le script suivant :

def monindicebis(L,a):

i=0

while L[i]!=a and i<len(L):

i=i+1

return i

Si on lance monindice(L,a) avec une valeur a qui n’apparâıt pas dans L, la fonction retournera :
Si on lance monindicebis(L,a) avec une valeur a qui n’apparâıt pas dans L on aura une index

error.
Pourquoi ? Et pourquoi cela ne se produisait pas pour monindice ci-dessus ?�� ��L’ordre des deux conditions du while est important grâce au caractère paresseux du and

On peut donc rajouter une condition à la fin pour qu’elle fasse la même chose la précédente et que
index :

def monindice(L,a):

i=0

while i<len(L) and L[i]!=a: # attention à l’ordre des deux conditions.

i=i+1

if i==len(L) :

raise ValueError(’valeur non trouvée’)

else :

return i

7.4 Version maison de remove :

def mon_remove(L,a):

"efface la première entrée de L où apparaı̂t la valeur a, \

lève une erreur sinon"

i=mon_index(L,a)

return mon_del(L,i)# appelle la fonction mon_del déjà créée.

7.5 Version maison de pop :

def mon_pop(L,i):

x=L[i]

mon_del(L,i)

return x

7.6 Version maison de count :

def mon_count(L,a):

compteur=0

for i in range(len(L)):

if L[i]==a:

compteur=compteur+1

return compteur

4

7.7 Version maison de reverse

Une solution est la suivante :

def mon_reverse(L):

temp=L[:]# cree une shallow copy de L,

for i in range(len(L)):

L[i]=temp[len(L)-i-1]

7.8 Version maison de sort

Les algo. de tri seront vus plus tard... (2ème année en IPT). Commentaires sur ce script :
● La variable temp est temporaire : cette copie de L va permettre de modifier L en gardant

jusqu’au bout le souvenir de ce qu’il y a au départ de L grâce à temp.
● Dans la boucle for, le compteur i parcourt tous les indices de la liste : ces indices vont de
0 à n-1 si on appelle n=len(L).

● Dans cette boucle for, le len(L)-i-1 parcourt les entiers de n-1 à 0, donc temp[len(L)-i-1]
parcourt les valeurs de la liste de l’entrée n-1 à 0.

● Avez-vous compris pourquoi on a besoin de temp : que se passerait-il si on avait écrit en
dernière ligne : L[i]=L[len(L)-i-1] ?

Remarque : on peut aussi faire un reverse qui n’utilise pas de liste auxiliaire en échangeant L[i]
avec L[n − 1 − i] grâce à une troisième variable tampon... (moins cher en mémoire qu’une liste).

8 Comparaison de la rapidité de deux fonctions : le module
time

Commentaire du script donné dans le sujet.

from time import clock # la fonction clock renvoie un temps d’horloge

def duree(fonction,n=100): # n prendra par défaut la valeur 100

debut=clock() # on stocke un temps d’horloge dans debut

fonction(n) # on appelle la fonction avec l’argument n

#ce qui prend un certain temps d’exécution

fin=clock() # on stocke le temps d’horloge dans fin

return fin-debut # la différence représente le temps d’exécution

Remarque : le second argument de duree est un argument optionnel : si on ne l’entre pas
i.e. qu’on entre seulement duree(f) où f est une fonction, alors n=100 par défaut. En revanche
duree(f,1000) donnera n=1000.

b) Retour sur le2) : y-a-t-il une différence entre les techniques du 2.b), du 2.c) et du 2.d) pour
fabriquer des listes.

Tester la durée des deux méthodes pour constituer la liste des sin(i) pour i ∈ ⟦0,1000⟧.

On va l’utiliser pour comparer la rapidité de plusieurs fonctions qui fabriquent la liste des sin(i)
pour i ∈ ⟦1, n⟧.

Par exemple :
def fa(n):

liste=[]

for i in range(n):

liste=liste+[sin(i)]

return liste

def fc(n):

liste=[]

for i in range(n):

liste.append(sin(i))

return liste

Ensuite, on exécute test(fa,1000) et test(fc,1000) : résultat ?�� ��Le append est bien plus rapide que le +.

5

