
Compte rendu du T.P. 3 (1ère partie)

1 Un premier savoir faire essentiel : manipuler les boucles
for

a) for i in range(100):

print(’python’,end=" ") # l’argument optionnel avec le mot clef

#end permet de définir ce que

fait le print après avoir écrit python. Ici on décide d’une espace

plutôt que le retour à la ligne standard

Seconde méthode

print("python "*100)

b) for i in range(0,22,2):

print(i)

Méthode 2

for i in range(0,22):

if i%2==0:

print(i)

c) Première méthode en testant la parité à chaque tour ;

S=0

for i in range(101):

if i%2==1:

S=S+i

Seconde méthode avec un pas de 2 dans le range :

S=0

for i in range(1,101,2):

S=S+i

d) Faire de même pour le calcul de
100

∏

i=1

i.

P=1 # attention initialisation différente pour le produit vide.

for i in range(1,101):

P=P*i

print(P)

2 La fabrication des listes : fabriquer une liste à l’aide d’une
boucle

Supposons par exemple qu’on veuille fabriquer une liste L qui contient tous les i2 pour i ∈ ⟦0,100⟧
comment faire ?

a) L’Idée 0 qui ne MARCHE PAS :
On a vu en T.P. qu’on ne peut pas fabriquer une liste ≪ à partir de rien ≫ via les commandes

L[0] =, L[1] = etc...
Par exemple, on ne PEUT PAS définir L = [2,3,1], en posant L[0] = 2, L[1] = 3, L[2] = 1. Bien

sûr dans ce cas il suffit d’affecter L=[2,3,1]. Mais pour la liste L des carrés des entiers de 1 à 100,
il faut une autre méthode !

b) L’idée 1 : avec l’opérateur + de concaténation :

�� ��construire cette liste L à l’aide d’une boucle, par concaténation successive à partir d’une liste vide.

1

L=[]

for i in range(101):

L=L+[i**2] # on ajoute à la liste L la liste à un élément [i**2] à chaque tour de boucle

print(L)

c) Idée 2 : où l’on rend possible l’idée 0
Il s’agit de préfabriquer une liste de longueur n qu’on peut ensuite modifier : Ainsi le code

suivant fonctionne :

L=[0]*101

for i in range(101):

L[i]=i**2

d) Idée 3 : avec le append : La fonction append a une syntaxe bien spécifique qui est celle
des méthodes qui s’appliquent aux listes :

L=[]

for i in range(101):

L.append(i**2)

print(L)

La différence entre le + et le append sera étudiée plus tard.
e) Idée 4 : En python, on peut définir des listes comme suit (pour cet exemple) :

L=[i**2 for i in range(101)]

3 Un deuxième savoir faire : écrire une fonction

a) Utiliser une fonction : si L=[1,23,12,5] en tapant max(L) dans le shell, on a la valeur
23 en retour.

c) Fabriquer une fonction :

def bissextile(annee):

test=((annee%4==0) and ((annee%100!=0) or (annee%400==0))

return test

4 Comment fabriquer une liste de nombres aléatoires pour
nos tests

a)Savoir importer la fonction et consulter l’aide :

from random import randint

help(randint)

Help on method randint in module random:

randint(a, b) method of random.Random instance

Return random integer in range [a, b], including both end points.

On comprend que : randint(a,b) fabrique un nombre entier (pseudo)-aléatoire dans ⟦a, b ⟧.

b) Fabriquer alors une fonction liste_alea qui prend un entier n comme entrée et
qui fabrique une liste de n nombres entiers aléatoires :

La méthode est la même qu’au § 2 pour fabriquer une liste de n éléments : (si n est bien défini) :

L=[]

for i in range(n):

L.append(randint(1,1000))

2

Mais ici on demande en plus de fabriquer une fonction, donc on met ce code dans la définition
d’une fonction, ce qui donne :

def liste_alea(n): # le n est l’argument de la fonction,

il sera rentré par l’utilisateur à chaque appel de la fonction

L=[]

for i in range(n):

L.append(randint(1,1000))

return L

5 Maximum dans une liste ou un tuple :�

�

�

�

Le but est ici de comprendre comment trouver le max. d’une liste en parcourant la liste.
C’est notre premier programme de manipulation sur les listes. Il est totalement hors-sujet
d’y utiliser des outils plus forts sur les listes comme le tri. En fait dans tout ce qui suit,
quand on demande de programmer une opération sur les listes, les seuls outils permis seront
les commandes d’extractions L[i] ou L[i ∶ j] et les outils que vous avez déjà développés.

a) Fonction mon_max :
Première méthode : en parcourant la liste à l’aide d’une boucle for sur les indices

def mon_max(L):

"Renvoie le max. d’une liste ou d’un tuple"

M=L[0]

for i in range(len(L)):

if L[i]>M:

M=L[i]

return M

Deuxième méthode : en parcourant à liste à l’aide d’une boucle for sur les valeurs

def mon_max(L):

"Renvoie le max. d’une liste ou d’un tuple"

M=L[0]

for a in L: # le compteur a parcourt les valeurs dans la liste L

if a>M:

M=a

return M

b) Amélioration

def max_mieux(L):

"renvoie la valeur et un indice du max. d’une liste ou d’un tuple"

M=L[0]

i_max=0

for i in range(len(L)):

if L[i]>M:

M=L[i]

i_max=i

return (M,i_max)�

�
	Cet algorithme d’obtention de max et de imax est INCONTOURNABLE : vous le re-

trouverez dans la plupart des épreuves écrites de concours sous une forme ou une autre...

3

