Chapitre 4 : fonctions et les variables'

Table des matieres

1 Manipulations de base sur les fonctions : 1
1.1 La définition d'une fonction L 1
1.2 L’utilisation d’une fonction L L Lo 2
1.3 Comment on peut définir une fonction avec plusieurs arguments 2
1.4 L’importance du return 2

2 Plus de précision sur les arguments d’une fonction 3
2.1 Une fonction peut tres bien ne pas avoir d’arguments 3
2.2 Une fonction peut avoir un (des) arguments optionnels 4

3 Les variables a ’intérieur de la déf. d’une fonction : 4
3.1 Lanotion de variable locale 4
3.2 La bonne cohabitation des variables locales et globales 5
3.3 Comment modifier une variable globale dans la déf. d’une fonction? 5
3.4 Cas d’un argument d’une fonction. L L L Lo 6

3.4.1 L’argument d’une fonction est une variable LOCALE 6
3.4.2 On peut utiliser et réaffecter en local 'argument de la fonction 6
3.4.3 Mais une fonction NE PEUT PAS réaffecter son argument en global 6

4 Valeurs et références : davantage sur P’affectation des variables 7
4.1 L’identifiant mémoire ou référence 7
4.2 Un exercice sur laffectation et la copie pour les types simples 7
4.3 Un exercice fondamental sur I’échange de deux variables 7
4.4 Le cas différent de la copie des listes L oo 8

1 Manipulations de base sur les fonctions :

Ce qui suit reprend ce qui a été fait au T.P. 3.

1.1 La définition d’une fonction

La syntaxe de définition de fonctions en PYTHON est trés simple. Si on veut définir une fonction

mathématique, par exemple f : +~ 22 + 2z + 1, on rentrera, dans la zone d’écriture de fichier de
LE.P. :

def f(x): # bien noter les : obligatoires et 1’indentation ligne suivante
return x**2+2%x+1

De méme pour les années bissextiles

def bissextile(annee):
test=((annee%4==0) and ((annee’100!=0) or (annee%400==0))
return test

[Notez bien que toutes les instructions servant a la définition de la fonction sont indentées.j

Ce dernier code est la définition d’une fonction dont le nom est bissextile qui prend un
argument appelé annee, et qui retourne ou renvoie une valeur appelée test a l'intérieur de la
fonction.

1.2 L’utilisation d’une fonction

Que faire des scripts de définition données au § 1.17 On les exécute, et une fois ce
script exécuté, les fonctions sont en mémoire et on peut appeler chaque fonction, autant de fois
qu’on veut dans le shell ou dans un autre morceau de programme pour avoir une réponse. Dans le
shell, comme suit :

>>> £(2)

9

>>> bissextile(2000)
True
>>>bissextile(2014)
False

[Bien retenir ces trois temps : définition de la fonction, exécution du script, appels de la fonction.j

1.3 Comment on peut définir une fonction avec plusieurs arguments

Une fonction peut avoir plusieurs arguments (variables en entrées) et plusieurs sorties. Pour les
fonctions de deux variables, par exemple, on connait déja la construction de tuple

def f(x1,x2):
return x1*x2,x1+x2

La fonction suivante agit sur une chaine de caracteres.

def tiret(mot_1,mot_2):
"met un tiret entre deux chaines de caractéres"
return mot_1+"-"+mot_2

La seconde ligne sert de documentation et s’obtient avec la commande help.

>>> help(tiret)

Help on function tiret in module __main__

tiret(mot_1, mot_2)
met un tiret entre deux chaines de caractéres

1.4 L’importance du return

a) La fonction suivante affiche bien un résultat, sans return :

def tiret2(mot_1,mot_2):
print (mot_1+"-"+mot_2)

Quelle différence avec tiret 7 C’est qu’on ne peut pas stocker, utiliser, le résultat de tiret2. Cette
fonction tiret2 ne fait qu'un affichage. Ainsi comparer :

parole=tiret(’bla’,’bla’)
print (parole)
bug=tiret2(’bla’,’bla’)
print (bug)

[Le return permet que votre fonction retourne vraiment une valeur, que vous pourrez stocker.]

b) L’execution de la commande return provoque la sortie de la fonction, et par exemple d’une
boucle.
On a déja vu l'algorithme suivant au chap. 3, ici on le met dans une fonction.

def f(N):
n=0
while 2%*n <=N:
n=n+1
return n

Voici une autre fagon de faire la méme chose :

def f_bis(N):
n=-1
while 1==1: # condition toujours wvraie ! On peut mettre, mieuzx, while
n=n+1
if 2%*n>N:
return n # fait sortir de la fonction donc de la boucle.

2 Plus de précision sur les arguments d’une fonction

Définition : Les arguments d’une fonction sont les variables qui doivent/peuvent étre mises
en entrées pour utiliser la fonction. On a déja vu des fonctions avec un ou plusieurs arguments.

2.1 Une fonction peut tres bien ne pas avoir d’arguments

Comme celle-ci

def sois_poli():
print (’bonjour monsieur’)

Noter que cette fonction ne retourne pas non plus de valeur mais fais seulement un affichage
print. Ainsi

>>>a=sois_poli()

ne donne pas de message d’erreur mais
>>> print(a)

None

Presque la méme mais qui retourne une valeur :

def je_suis_galant():
print (’bonjour mademoiselle’)
return ’un bouquet de fleur’

Dans ce cas, on obtient comme affichage lors de ’appel de cette fonction dans le shell :

>>>>> je_suis_galant()
bonjour mademoiselle
’un bouquet de fleur’

Mais comme valeur de retour, on obtient :

>>>a=je_suis_galant ()
>>>print(a)
un bouquet de fleur

Noter une fois encore la différence entre [’affichage provoqué par I'appel de la fonction dans le
shell d’un c6té, et la valeur de retour de la fonction de autre.

True

2.2

Une fonction peut avoir un (des) arguments optionnels

Considérons ’exemple suivant :

def Carl_Friedrich(N=101):
S5=0
for i in range(N):

S=8+1

return S

Ici, laffectation N=101 a lintérieur de la liste des arguments de Carl_Friedrich dit que :
— Si on appelle cette fonction sans préciser de valeur d’argument, elle fera le calcul pour N=101,

ainsi :

>>> Carl_Friedrich()

5050

Si on appelle cette fonction en précisant une valeur d’argument, on modifiera la valeur du
N dans l'algorithme, ainsi :

>>> Carl_Friedrich(10)

45

3 Les variables a l'intérieur de la déf. d’une fonction :

3.1
a)

La notion de variable locale

Un premier exemple pour sentir ce qu’est une variable locale :

def fonction_bete():
a=1
print(’ai-je mis la valeur’,a,’quelque part 7’)

Si on fait print(a) dans le shell, la réponse sera :

L’affectation a=1 n’existe pas dans la mémoire du shell. Pourtant elle a existé pendant le
déroulement de la fonction, puisque sinon linstruction print n’aurait pas donné le résultat
obtenu. C’est en ce sens qu’on dit que la variable a affectée pendant la définition de la
fonction est une variable locale a la fonction.

Les variables créées dans le code de déf. d’une fonction sont dites locales. Elles occupent un
espace mémoire séparé appelé espace local.

Parallélisme avec les variables muettes des maths : dans la fonction Carl_Friedrich
définies ci-dessus, la variable i est locale : c’est bien ’analogue de la variable de sommation
en maths.

On va voir, avec l’exemple suivant, que la variable S est aussi locale, et cela c’est plus
surprenant.

Un troisiéme exemple pour aller un peu plus loin :

def renvoie_un():
a=1
return a
La on pourrait se dire, ah cette fois, elle renvoie a, donc si on exécuter renvoie_un() on
aura a=1. Il n’en est rien!
La fonction retourne la valeur 1 c’est tout, et la commande a=1 n’a pas été opérée dans la

mémoire principale. Elle a eu lieu seulement dans [’espace local de la fonction, qui s’est vidé
a la fin de l'exécution.

C’est le piege de la variable de retour: la valeur de la variable de retour est bien communiquée
a l’espace mémoire extérieur a la fonction (espace global) mais pas le nom de cette variable!

3.2

La bonne cohabitation des variables locales et globales

a) Un code avec deux a qui cohabitent trés bien :

a=1
def pauvre_fonction():
a=2
return a
print (pauvre_fonction())
print(a)

Résultat ?

Moralité : Dans [’espace local de la fonction, on peut utiliser une variable locale qui
s’appelle a en lui affectant la valeur 2 méme s’il existe déja une variable globale a avec la
valeur 1 dans I’espace global. Ces deux affectations n’interféerent pas :

— A l'intérieur de la déf. de la fonction, ici seule I'affectation locale a=2 compte
— A Dextérieur de la déf. de la fonction, seule 'affectation globale a=1 compte.

b) Quand il n’y a pas de redéfinition en local de la variable, la fonction utilise la variable définie

en global. Comme dans ’exemple suivant :

mon_pi=3.14
def perimetre(R):
return 2*mon_pi*R

Moralité : Lorsque linterpréteur Python doit évaluer le contenu d’une variable, d’un
nom, il le fait suivant I’ordre de priorité suivant : espace local puis espace global.
— d’abord l'espace local : il regarde si la variable a été définie localement (cf. exemple
du a)).
— si la variable n’a pas été définie localement, il regarde si la variable est définie dans
I'espace global comme dans perimetre.

Remarque (pas essentielle ici) On peut compléter cette liste de priorité en disant que : 'espace
local est prioritaire sur I'espace global qui est lui-méme prioritaire sur ’espace interne.

Ce dernier espace interne est celui qui contient des noms de variables ou de fonctions déja

définies par PYTHON et qu’on peut redéfinir.

3.3 Comment modifier une variable globale dans la déf. d’une fonction ?

On vient de voir au 3.2 b) qu’on peut lire le contenu d’une variable globale dans une fonction.

Mais comment modifier ce contenu pour que cette modification apparaisse dans I’espace global ?

[Avec la spécification : global, comme dans ’exemple suivant :j

pi=3.14
def ameliore_la_trigo():
global pi
pi=3.1415

L’exécution de cette fonction changera la variable globale pi.

our une bonne pratique de la programmation : les variables globales devraient étre

réservées a des constantes du programme, qu’on n’a pas besoin de modifier. Il est préférable
de leur donner un nom long ou en tous cas explicite. Suivant cette recommandation, la
spécification global de PYTHON ne sera pas utilisée souvent !

3.4 Cas d’un argument d’une fonction

Par simplicité dans ce qui suit, on ne prend qu'un argument, mais le raisonnement vaut
aussi bien pour chacun des arguments d’une fonction ayant plusieurs arguments.

3.4.1 L’argument d’une fonction est une variable LOCALE
Lorsqu’on définit une fonction, le nom de(s) variable(s) dans 'argument est LOCAL

def ajoute(x,y):
return x+y

Les noms de variables x et y qui apparaissent ici peuvent étre utilisés ailleurs sans probleme, par
exemple :

x=2

y=3

ajoute(5,6)

print (x)

print (y)

3.4.2 On peut utiliser et réaffecter en local ’argument de la fonction

def diminue(a):
a=a-1
return a

Cette fonction n’utilise qu’une seule variable, son argument, qui a pour nom a en local.

3.4.3 Mais une fonction NE PEUT PAS réaffecter son argument en global
Que vaut a a l'issue du code suivant :

a=6
diminue(a)

oralité : si on veut vraiment modifier la variable a avec la fonction diminue, il fau
réaffecter dans a le résultat de diminue(a) autrement dit exécuter :

a=diminue(a)

Avertissement : Ce qui précede doit étre nuancé : si la variable a est une liste, ou plus
généralement un objet mutable (modifiable), la situation est plus subtile, nous y reviendrons.
Le titre de ce paragraphe est donc valable pour les arguments de type int, bool, float,
tr,tuple mais pas tout a fait pour les listes.

Culturel pour nous a ce stade : Le fonctionnement précédent s’appelle le passage par valeur.
Dans le code ci-dessus, on avait une variable globale a avec comme valeur 6. Lorsqu’on exécute
diminue(a) le programme crée un espace mémoire local a la fonction avec une variable locale que
j’appellerai pour simplifier a.locale (placée & un autre endroit que la variable a précédente) et il
passe la valeur de 'entrée a a la variable locale a.locale. Apres la variable globale a n’intervient
plus, en particulier elle ne peut pas étre modifiée!

Pour comprendre P’avertissement : Il faudra déja en dire plus sur ces objets mutables et
non mutables. Mais on connait déja des fonctions, un peu étranges, qui opere sur les listes en les
modifiant.

Par exemple si L=[15,3,5] la commande del (L[1]) qui est une fonction il est vrai a la syntaxe
un peu bizarre, modifie la liste L.

4 Valeurs et références : davantage sur D’affectation des va-
riables

4.1 L’identifiant mémoire ou référence

Si on rentre a=3, la variable a contient l'entier 3. La commande id(a) donne l’identifiant
mémoire ou est stocké a. Ce sera un nombre assez long.... essayez... Cela nous renvoie au cours du
chapitre 1 : chaque mémoire a un numéro d’emplacement (son id) et un contenu (ici 3)

En fait, en PYTHON, méme si on ne stocke pas un nombre dans une variable, si un nombre
intervient, il lui donne une adresse mémoire. Ainsi essayez :

id(3) # 3 n’est pas stocké dans une variable, mais dés qu’on 1’introduit il aura
#une adresse.

a=3

id(a)

b=3

id(b)

Ici, les noms de variables a et b pointent tous vers la méme adresse mémoire qui est celle ou est
stockée le nombre 3.

4.2 Un exercice sur ’affectation et la copie pour les types simples

Exercice 1. a) Que pensez-vous que donne le programme suivant :

a=3
b=a
a=2
print(b)

Vérifions !
b) Pourquoi ce qui suit est-il révélateur de ce que fait affectation ?

a=3
id(a)
b=a
id(a)
id(b)
a=2
id(a)
id(b)

Commentaires avec des dessins :

4.3 Un exercice fondamental sur I’échange de deux variables

Exercice 2. On a deux variables x et y avec un certain contenu.
a) Pourquoi le code suivant ne convient-il pas?

x=2 # pour fixer les idées
y=3 # sur le contenu des variables
x=y, # les deux variables contiennent la valeur 3

y=x

Dans ce qui suit on propose trois méthode assez différentes pour y arriver :
b)(M1) La méthode standard en informatique, qui marche dans tous les langages de program-
mation est d’utiliser une troisieme variable, auxiliaire. Comment faire ?

c) (M2) Une méthode plus proche d’opérations que nous ferons en mathématiques se résume
dans la suite d’instruction suivante :

X=X+y,
y=xy,
X=x-y

(i) Commentez cette suite d’instruction, qu’obtient-on & la fin.
(ii) Appliquez-la & x=1/3 et y=1/2. Que pensez-vous du résultat ?
d) (M3) Une méthode propre a PYTHON : l'affectation multiple
A Taide de 'affectation en couple vue au paragraphe sur les tuples, comment faire ?

4.4 Le cas différent de la copie des listes

Exercice 3. a) Reprenons le schéma de I’exercice 1 mais pour deux listes. Autrement dit, considérons
le code

a=[1,2]

b=a

a[0]=3 # ceci est une modification pas une réaffectation de a
print(a)

print(b) # b est modifié comme a

Quelle différence avec 1’exercice cité?
b) Quelle raison trouver au comportement du a) ? Reprendre la question de l'exercice 1 b) avec
le cadre du a).

D’une maniére générale, en informatique, on dit que les objets qui se comportent comme
les listes ici sont mutables ou muables. Ils peuvent changer de valeur sans changer d’identifiant.

A Tintérieur d’un objet liste, chaque objet a son identifiant... ainsi id(a[0]) lui changera dans
I’affectation précédente....

Moralité : en faisant b=a, on crée un alias de la liste a qui restera toujours comme
a quelque soient les modifications de a.

Comment créer une copie un peu plus autonome ? A 'aide des commandes d’extractions
dans une liste (slicing).

Exercice 4. a) Entrez le code suivant :

a=[10,6,7]
id(a)
b=a[0:3]
print(b)
id(b)

Que peut-on en déduire sur b si on modifie a? Le vérifier.
b) Remarque : Plutot que a[0:3], on peut taper a[:].

