Chapitre 3 : boucles

Ce que les ordinateurs savent tres bien faire : répéter des instructions beaucoup de fois!

En programmation, on appelle boucle un systeme d’instructions qui permet de répéter un
certain nombre de fois (voire indéfiniment, ce qui pose probléme) toute une série d’opérations.

1 Boucles conditionnelles : while

Supposons qu’on veuille chercher, pour un nombre N déja présent dans la mémoire sous le nom
N, le plus petit entier n tel que 2" > N. On peut utiliser le programme qui suit :

n=0 # initialisation nécessaire
while 2%*n <=N:
n=n+1 # 2tération

Dans le programme :

— la variable n sert de compteur, qui vaut 0 avant le début de la boucle.

— linstruction d’affectation n=n+1 dit qu’on incrémente i.e. augmente de n de 1 a chaque
étape, tant que (le while) la condition 2**n<=N est réalisée.

— A Tarrét de la boucle : notons ny est le plus grand entier tel que 2"/ < N. Quand le
compteur n arrive a la valeur ny, la condition sur laquelle porte le while est encore réalisée,
donc le programme exécute encore la commande n=n+1. A ce moment-la, on a n = ny + 1.
Quand la variable n est de nouveau testée pour la condition 2#%#*n<=N , la condition n’est
plus vérifié : on sort de la boucle.

La valeur de n obtenue est bien ny + 1, c’est-a-dire le plus petit entier n tel que 2™ > N.

[Pour les boucles while : il faut étre str que la boucle S’arréte.]

Attention a ne pas confondre le while avec le if :
Certains essaient parfois de faire la boucle précédente avec les instructions :

if 2%*n <=N:
n=n+1

[La condition if entrainera une seule exécution de ce qui suit, PAS une boucle !]

2 Boucles inconditionnelles ou boucle for

Lorsqu’on souhaite répéter un bloc d’instructions un nombre déterminé de fois, on dispose d’une
structure qui économise d’une part l’initialisation du compteur et d’autre part son incrémentation :
la boucle for.

2.1 Un premier exemple : s’habituer aux range
Sil’on veut afficher les entiers de 1 a 10 :

for i in range(1,11):
print (i)

¢ Dans quoi varie le compteur i ? Ici dans un range.

Le type range a été brievement présenté au chapitre précédent. Disons pour compléter ici que
la fonction range produit un itérateur, qui est un objet qui, au lieu de garder en mémoire une liste
d’entiers consécutifs, les fabrique au fur et a mesure, toujours dans un souci d’optimisation de la
mémoire.

La gestion des bornes est la méme que pour les autres types séquentiels autrement dit range (0,11)
produira les entiers de 0 & 10 (attention)!
¢ Que peut-on faire avec un range ? De un a trois arguments

— range(n) fabriquera les entiers de 0 a n — 1.

— range(a,b) fabriquera les entiers de I’ensemble [a,b—1]

— range(a,b,p) fabriquera les entiers de la forme a + kp pour k£ € N qui sont inférieurs a b.
Par exemple range(3,14,2) fabriquera 3,5,7,9,11,13. Le troisieme argument p s’appelle
le pas.

ans une boucle for i in range(), c’est PYTHON qui s’occupe de la variable i de lui faire
prendre les valeurs successives donc :
Ne pas faire i =i+1 dans une telle boucle par exemple ou encore i=0!
TOUCHE PAS A MA VARIABLE i de boucle for!!

2.2 Les boucles for permettent par exemple de calculer un Z :
La méthode suivante de calcul de somme a été présentée en cours de maths :

s=0
for i in range(0,101):
s=s+i # a chaque étape, on ajoute i & s.
print(s) # ceci n’est pas indenté, donc est en dehors de la boucle for

Remarques : ¢ Ici, on a une initialisation nécessaire, non pas pour le compteur i mais pour la
variable s qui va contenir la valeur de la somme.

e En PYTHON, c’est lindentation qui délimite le bloc d’instructions qui va étre exécuté a chaque
étape de la boucle.

Exercice : Quelle est la différence de résultat entre le code précédent et le suivant ?

s=0

for i in range(0,101):
s=s+i
print(s)

2.3 Le compteur d’une boucle for peut parcourir n’importe quel type
séquentiel !

[C’est une spécificité de PYTHON par rapport a d’autres langages]

Les types séquentiels ont été introduits au chapitre précédents : on a vu les type string, tuple,
et list.

e Un exemple ou le compteur varie dans une liste :

Supposons qu’on ait une liste L formées de nombres et qu’on veuille ajouter tous les éléments
de la liste. On ne sait pas a priori, la taille de la liste.

Dans un langage de programmation usuel, on écrira quelque chose qui avec la syntaxe PYTHON
donne :

s=0
n=len(L) # donne le mombre d’éléments de L
for i in range(n):
s=s+L[i] # < est 1’INDICE
print (s)

Mais en PYTHON, on peut faire plus économique :

s=0
for valeur in L:

s=s+valeur # N.B. wvaleur n’est pas un mot-clef, c’est juste un nom parlant.
print (s)

e Un exemple ou le compteur varie dans une tuple : le méme, en remplacant L par un
tuple /

e Un exemple ou le compteur varie dans une chaine de caractéres :

Pour manipuler les chaines de caracteres, mentionnons deux options de la commande print :

— Choix du séparateur : normalement, si on donne plusieurs arguments a print, ils sont
séparés par un espace a ’exécution de print. Par exemple :
age=18
print(’votre &ge est’,age)

Mais on peut choisir un autre séparateur via Pargument (optionnel) sep :
a=2

b=3

print(a,b,sep="<")

— Remplacement du saut a la ligne en fin de print par une autre caractéere via
Pargument end : Par défaut, entre deux print il y a un saut a la ligne. Par exemple, avec
les variables précédentes
print(a)
print (b)
donnera
2
3
Mais on peut déclarer plutot
print(a,end=’ et ’)
print(b)

Revenons maintenant aux boucles for utilisant une chaine de caracteres :

classe=>MPSI 1°
for i in classe:
print (i, end=’x%")
print () # juste pour aller 4 la ligne & la fin.

Parce qu’on peut s’en servir pour itérer dans une boucle, les types séquentiels sont aussi
appelés types itérables.

