
Chapitre 3 : boucles

Ce que les ordinateurs savent très bien faire : répéter des instructions beaucoup de fois !

En programmation, on appelle boucle un système d’instructions qui permet de répéter un
certain nombre de fois (voire indéfiniment, ce qui pose problème) toute une série d’opérations.

1 Boucles conditionnelles : while

Supposons qu’on veuille chercher, pour un nombre N déjà présent dans la mémoire sous le nom
N, le plus petit entier n tel que 2n > N . On peut utiliser le programme qui suit :

n=0 # initialisation nécessaire

while 2**n <=N:

n=n+1 # itération

Dans le programme :
— la variable n sert de compteur, qui vaut 0 avant le début de la boucle.
— l’instruction d’affectation n=n+1 dit qu’on incrémente i.e. augmente de n de 1 à chaque

étape, tant que (le while) la condition 2**n<=N est réalisée.
— A l’arrêt de la boucle : notons nf est le plus grand entier tel que 2nf ≤ N . Quand le

compteur n arrive à la valeur nf , la condition sur laquelle porte le while est encore réalisée,
donc le programme exécute encore la commande n=n+1. A ce moment-là, on a n = nf + 1.
Quand la variable n est de nouveau testée pour la condition 2**n<=N , la condition n’est
plus vérifié : on sort de la boucle.
La valeur de n obtenue est bien nf + 1, c’est-à-dire le plus petit entier n tel que 2n > N .�� ��Pour les boucles while : il faut être sûr que la boucle s’arrête.

Attention à ne pas confondre le while avec le if :
Certains essaient parfois de faire la boucle précédente avec les instructions :

if 2**n <=N:

n=n+1�� ��La condition if entrâınera une seule exécution de ce qui suit, PAS une boucle !

2 Boucles inconditionnelles ou boucle for

Lorsqu’on souhaite répéter un bloc d’instructions un nombre déterminé de fois, on dispose d’une
structure qui économise d’une part l’initialisation du compteur et d’autre part son incrémentation :
la boucle for.

2.1 Un premier exemple : s’habituer aux range

Si l’on veut afficher les entiers de 1 à 10 :

for i in range(1,11):

print(i)

● Dans quoi varie le compteur i ? Ici dans un range.
Le type range a été brièvement présenté au chapitre précédent. Disons pour compléter ici que

la fonction range produit un itérateur, qui est un objet qui, au lieu de garder en mémoire une liste
d’entiers consécutifs, les fabrique au fur et à mesure, toujours dans un souci d’optimisation de la
mémoire.

La gestion des bornes est la même que pour les autres types séquentiels autrement dit range(0,11)
produira les entiers de 0 à 10 (attention) !
● Que peut-on faire avec un range ? De un à trois arguments

1

— range(n) fabriquera les entiers de 0 à n − 1.
— range(a,b) fabriquera les entiers de l’ensemble ⟦a, b − 1⟧
— range(a,b,p) fabriquera les entiers de la forme a + kp pour k ∈ N qui sont inférieurs à b.

Par exemple range(3,14,2) fabriquera 3,5,7,9,11,13. Le troisième argument p s’appelle
le pas.�

�
�
�

Dans une boucle for i in range(), c’est Python qui s’occupe de la variable i de lui faire
prendre les valeurs successives donc :
Ne pas faire i =i+1 dans une telle boucle par exemple ou encore i=0 !

TOUCHE PAS A MA VARIABLE i de boucle for ! !

2.2 Les boucles for permettent par exemple de calculer un ∑ :

La méthode suivante de calcul de somme a été présentée en cours de maths :

s=0

for i in range(0,101):

s=s+i # a chaque étape, on ajoute i à s.

print(s) # ceci n’est pas indenté, donc est en dehors de la boucle for

Remarques : ● Ici, on a une initialisation nécessaire, non pas pour le compteur i mais pour la
variable s qui va contenir la valeur de la somme.

● En Python, c’est l’indentation qui délimite le bloc d’instructions qui va être exécuté à chaque
étape de la boucle.

Exercice : Quelle est la différence de résultat entre le code précédent et le suivant ?

s=0

for i in range(0,101):

s=s+i

print(s)

2.3 Le compteur d’une boucle for peut parcourir n’importe quel type
séquentiel !�� ��C’est une spécificité de Python par rapport à d’autres langages

Les types séquentiels ont été introduits au chapitre précédents : on a vu les type string, tuple,
et list.

● Un exemple où le compteur varie dans une liste :
Supposons qu’on ait une liste L formées de nombres et qu’on veuille ajouter tous les éléments

de la liste. On ne sait pas a priori, la taille de la liste.
Dans un langage de programmation usuel, on écrira quelque chose qui avec la syntaxe Python

donne :

s=0

n=len(L) # donne le nombre d’ éléments de L

for i in range(n):

s=s+L[i] # i est l’INDICE

print(s)

Mais en Python, on peut faire plus économique :

s=0

for valeur in L:

s=s+valeur # N.B. valeur n’est pas un mot -clef , c’est juste un nom parlant ..

print(s)

2

● Un exemple où le compteur varie dans une tuple : le même, en remplaçant L par un
tuple !

● Un exemple où le compteur varie dans une châıne de caractères :
Pour manipuler les châınes de caractères, mentionnons deux options de la commande print :
— Choix du séparateur : normalement, si on donne plusieurs arguments à print, ils sont

séparés par un espace à l’exécution de print. Par exemple :
age=18

print(’votre âge est’,age)

Mais on peut choisir un autre séparateur via l’argument (optionnel) sep :
a=2

b=3

print(a,b,sep=’<’)

— Remplacement du saut à la ligne en fin de print par une autre caractère via
l’argument end : Par défaut, entre deux print il y a un saut à la ligne. Par exemple, avec
les variables précédentes
print(a)

print(b)

donnera
2

3

Mais on peut déclarer plutôt
print(a,end=’ et ’)

print(b)

Revenons maintenant aux boucles for utilisant une châıne de caractères :

classe=’MPSI 1’

for i in classe:

print(i,end=’*’)

print () # juste pour aller à la ligne à la fin.

�

�
	Parce qu’on peut s’en servir pour itérer dans une boucle, les types séquentiels sont aussi

appelés types itérables.

3

