
Chapitre 5 : approfondissements sur les listes

A la fin du chapitre précédent, on a découvert un comportement surprenant des listes : si L est
une liste et qu’on définit M=L toute modification de L modifiera aussi M. Nous avons expliqué ce
comportement à partir du fait que le contenu de la case mémoire vers laquelle pointe le nom L est
une liste d’adresses et pas une liste de valeurs.

1 Comment fabriquer une copie plus autonome d’une liste

1.1 La première méthode : la copie par extraction

On a vu (chap. 2, extraction, slicing) que si L est une liste comme celle de notre exemple, la
commande L[0:2] va fabriquer une nouvelle liste contenant L[0] et L[1].

Ce qui est intéressant avec cette commande, c’est que la nouvelle liste ainsi créée a un identifiant
mémoire différent de celui de L donc si on extrait toutes les valeur de L, on a une copie du contenu
de L qui est cette fois à un endroit différent dans la mémoire.

L=[13,4,5,6]

M=L[0:4]

print(id(L))

print(id(M))

Du coup cette fois, M apparâıt bien comme autonome de L puisque

L[0]=45

print(L)

print(M) �� ��Pratique : pour extraire tout le contenu d’une liste L, commande L[:]

1.2 Pourquoi Python appelle-t-il le type de copie précédente une shal-
low copy ? �� ��Shallow copy : copie peu profonde.

La raison est qu’on peut faire des listes de listes ! Et dans ce cas... il faut faire un dessin encore
plus compliqué de ce qu’il y a en mémoire si :

L=[1,2,3]

Grosse_bete=[L,"marcel"]

Que se passe-t-il alors si je fais une copie de Grosse_bete par la méthode d’extraction ?

GB2=Grosse_bete[:]

Bien sûr GB2 a un id différent de Grosse_bete mais il contient la même liste d’adresses mémoires.
Faire un schéma !
Si donc on fait une modification de L (qui ne change pas son id !), on modifiera aussi GB2 !

L[0]=4

print(Grosse_bete[0][0])

print(GB2[0][0])

1



1.3 Comment faire une copie vraiment autonome ? A deep copy

Il y a plusieurs méthodes. Il serait amusant de programmer cela en descendant les ramifications
de la mémoire. En Python le module copy est disponible pour le faire avec la commande deepcopy.

from copy import deepcopy

GB3=deepcopy(Grosse_bete)

L[0]=17

print(Grosse_bete[0][0])

print(GB3[0][0])

2 Les listes comme argument de fonctions

2.1 Rappel du chapitre 4 : une règle d’or

On a vu au chapitre 4, la règle d’or suivante :�� ��Une fonction ne modifie pas ses arguments

Cela signifie que par exemple si on fabrique une fonction ajoute_un comme suit :

def ajoute_un(a):

a=a+1 # affectation qui crée un a local ayant pour contenu celui de la valeur a

#passée en argument plus 1.

return a # retour de la valeur du a local

Si on appelle cette fonction comme suit :

x=2

print(ajoute_un(x))

print(x)

on a bien eu une valeur de retour de la fonction qui vaut 3, mais x n’a pas été modifié. On a vu
que la solution était de réaffecter dans x la valeur de retour de la fonction autrement dit :

x=ajoute_un(x)

2.2 Une version plus exacte de la règle d’or :

La vraie règle d’or sur ce problème est la suivante :�



�
	Une fonction ne peut modifier que ses arguments qui sont des variables modifiables (mu-

tables) : pour nous pour l’instant, les seules variables modifiables connues sont les listes.

2.2.1 Qu’est ce que cela veut dire que le type liste est modifiable (mutable) ?

Cela signifie simplement qu’on peut, comme on l’a expliqué au chapitre précédent, modifier une
liste L sans la réaffecter, comme on l’a vu ci-dessus, par exemple par L[0]= ou L[0:3]=

La liste n’a pas changé d’adresse mémoire, elle n’a pas été réaffectée, et en même temps, elle a
été vraiment modifiée.�



�
	Il faut distinguer une modification L[i]=, ou L[1:4]= ou L.append() d’une affectation L=,

spécialement à l’intérieur des fonctions.

2



2.2.2 Deux comportement bien différents

def essai1(L):

if L!=[]:

L[-1]="fin"

def essai2(L):

L=L[0:len(L)-1]+["fin"]

Dans essaie2 l’affectation L= crée un L local !.
Conclusion :
De même on voit apparâıtre une différence entre :

def end1(L):

L.append("fin")

def end2(L):

L=L+["fin"]

2.2.3 Nous avons déjà fabriqué des fonctions qui modifient la liste en argument !

Dans le T.P. 3, on demandait de créer une fonction mon_reverse, qui fasse la même chose que
la méthode reverse vendue avec la classe liste (cf. le help(list)).

Une solution est la suivante :

def mon_reverse(L):

josephine=L[:]# cree une shallow copy de L,

for i in range(len(L)):

L[i]=josephine[len(L)-i-1]�
�

�
�

Point essentiel : dans ce script, il n’y nulle part de L=. Une telle commande créerait un
L local ! En revanche il y a un L[i]= qui modifie l’entrée i du L passé en argument. Voir
aussi le corrigé du T.P. 3. par exemple pour le del.

3


