
D.S. 2 informatique commune MPSI 1

Question 0. a) On calcule : 65 = 64 + 1 = 26 + 1 donc son écriture binaire est 1000001
(écriture sur 7 bits).

Ensuite 97=64+32+1=65+32 ce qui s’écrit en binaire, sur 7 bits, 1100001.

Comme 97 − 65 = 32 = 25, pour passer de l’écriture binaire d’une majuscule à une miniscule,
il suffit de modifier un seul bit (le bit numero 5 en appelant bit numéro 0 le bit des unités).

b) Le seul piège avec la méthode lower est qu’elle s’applique au type str non mutable. Donc
comme le dit d’ailleurs l’énoncé, elle retourne une nouvelle chaîne de caractères, mais elle ne
modifie pas la chaîne à laquelle on l’applique, d’où la nécessité de stocker sa valeur de retour dans
le programme ci-dessous. Ne pas oublier aussi la condition if numero>=97 and numero<=122:
qui fait qu’on ne codera que les caractères correspondant à des lettres et pas les caractères
spéciaux.

def ConvertitTexteEnTab(texte):
tab=[]
texteminus=texte.lower()
for lettre in texteminus:

numero=ord(lettre)
if numero>=97 and numero<=122:

tab.append(numero-97)
return tab

La fonction suivante est plus facile : attention seulement à ne pas utiliser de append pour les
chaînes de caractères. Le append ne s’applique qu’aux listes.

def ConvertitTabEnTexte(tab):
texte=’’
for valeur in tab:

texte=texte+chr(valeur+97)
return texte

Question 1. On donne deux versions. La première ne fait que des tests d’égalités d’entrées
de listes, ce qui permet de bien évaluer sa complexité, comme demandé ensuite par l’énoncé à la
question 2. La seconde s’autorise le test d’égalités entre listes, ce test faisant lui-même la boucle
qu’on a programmé à la version 1.

def enTeteDeSuffixe(mot,tab,k):
suffixe = tab[k:]
for i in range(len(mot)):

if mot[i]!=suffixe[i]:
return False

return True

def enTeteDeSuffixe2(mot,tab,k):
suffixe = tab[k:]
m = len(mot)
return mot == suffixe[:m]

Question 2. La seule chose qui demande du soin est de savoir où arrêter le range de la boucle
for. La dernière position possible pour le début de mot est len(tab)-len(mot).

def rechercherMot(mot,tab):
for i in range(len(tab)-len(mot)+1):

if enTeteDeSuffixe(mot, tab, i):
return True

return False

Remarque : avec la fonction enTeteDeSuffixe2, on n’aura pas de out of range même si on
écrit for i in range(len(tab)) dans rechercherMot. C’est un avantage du slicing.

Complexité : Aumaximum, si la boucle va à la fin, TeteDeSuffixe(mot,tab,k) fera m=len(mot)
tours de boucles, donc m tests d’égalités. Complexité en O(len(mot)).

En notant n = len(tab) et m = len(mot), l’appel de rechercherMot(mot,tab) va, au maxi-
mum effectuer n−m+1 tours de boucles et à chaque tour de boucles l’appel de enTeteDeSuffixe(mot,tab,i)
fait au plus m tests d’égalités élémentaires.

Au total, on fait donc au plus m(n − m + 1) ≤ mn tours de boucles. La complexité est un
O(mn).

Question 3.

def compterOccurences(mot, tab):
n = 0
for i in range(len(tab)-len(mot)+1):

if enTeteDeSuffixe(mot, tab, i):
n=n+1

return n

Question 4.

def frequenceLettre(tab):
l = [0]*26
for lettre in tab:

l[lettre]+=1
return l

La fonction ci-dessous est en O(len(tab)). Une autre solution souvent utilisée est la suivante :

def fl2(tab):
L=[0]*26
for i in range(26):

for j in range(len(tab)):
if tab[j]==i:

L[i]=L[i]+1
return L

Comparaison d’efficacité : dans la fonction fl2 on fait 26 ∗ len(tab) test d’égalités en
plus. Il se trouve qu’en pratique cela change radicalement l’efficacité pratique comme le montre
le test suivant :

essai
from random import randint
tab=[]
for i in range(10000):

tab.append(randint(0,25))
from time import clock
a=clock()
frequenceLettre(tab)
b=clock()
fl2(tab)
c=clock()
print("temps frequence lettre : ", b-a)
print("temps fl2",c-b)

Avec le résultat suivant :

temps frequence lettre : 0.0007429999999999382
temps fl2 0.014185000000000336

Le temps est multiplié d’un facteur 50, même si les deux algo. sont en O(len(tab)).

La fonction suivante donne le même résultat mais à chaque tour de boucle, on a un ap-
pel à compterOccurence en O(len(tab)) Le problème avec cette fonction est qu’elle appelle
enTeteDeSuffixe dans laquelle on a crée un tableau suffixe à chaque appel. Sur un grand
tableau, cela occasionne beaucoup d’affectations supplémentaires. Le résultat est spectaculaire.

def fl3(tab):
l=[0]*26
for i in range(26):

l[i]=compterOccurences([i],tab)
return l

temps fl3 2.522245

Le temps est 100 fois plus long qu’avec fl2 et donc 5000 fois plus long qu’avec la première
fonction. Si on modifie la fonction enTeteDeSuffixe en enlevant la création de la liste suffixe
en remplaçant suffixe[i] par tab[k+i] on diminue le temps d’un facteur 10.

N.B. En outre, pour les grandes listes Python, il n’est pas vrai que l’accès à toutes les entrées
se fait avec le même temps.

Question 5.

Il est demandé que la fonction affiche les mots de deux lettres et leur fréquence. On utilise
donc la commande print et les résultats sont affichés sous la forme mot : fréquence.

Une première version vue sur le copies est la suivante :

def AFB_naif(tab):
for i in range(len(tab)-1):

mot=tab[i:i+2]
print(mot,":",compterOccurences(mot,tab))

Cette fonction présente le défaut de faire des affichages multiples... elle affichera chaque mot
autour de fois qu’il apparaît.

def AFB(tab):
LettresPresentes=[]
freq=frequenceLettre(tab)
for i in range(26):

if freq[i]!=0:
LettresPresentes.append(i)

on a frabriqué un tableau, sans répétition, des lettres présentes dans tab
for n in LettresPresentes: # parcours des valeurs !

for k in LettresPresentes:
occ=compterOccurences([n,k],tab)
if acc!=0:

print([n,k],"repeté",occ,"fois")

Question 6.

def minimum(tab):
temoin=tab[0]
imin=0
for i in range(len(tab)):

if tab[i]<temoin:
imin=i
temoin=tab[i]

return (temoin,imin)

Question 7

def TriSelect(tab):
tabtrie=[]
while tab!=[]:

imin=minimum(tab)[1]

tabtrie.append(tab.pop(imin))
return tabtrie

Question 8

La fonction minimum effectue exactement n comparaisons tab[i]<temoin : une comparaison
par tour de boucles. La fonction TriSelect effectue n appel à la fonction minimum : un par tour
de boucles. Donc n × n = n2 comparaisons.

Question 9

def comparerSuffixe(tab,k1,k2):
suff1 = tab[k1:]
suff2 = tab[k2:]

if suff1 == suff2:# ne se produit que si k1==k2
return 0 # car sinon les suffixes sont de longueurs
différentes !

for i in range(min(len(suff1), len(suff2))):
if suff1[i] < suff2[i]:

return -1
elif suff1[i] > suff2[i]:

return 1
if len(suff1)<len(suff2):

return -1
else :

return 1

Question 10 On doit modifier la fonction minimum pour qu’elle calcule le minimum pour
l’ordre lexicographique, autrement dit, on remplace l’ordre usuel < qui apparaît dans la fonction
minimum par comparerSuffixes. Il faut pendre bien garde d’utiliser les valeurs de T.

Les valeurs T[i] représenteront des numéros de suffixes de tab.

La fonction miniSuffixe renvoie l’indice dans T de la plus petite valeur T[i]. C’est important
de comprendre cette différence indice/valeur dès qu’on va faire des pop dans T.

def miniSuffixe(tab,T):
"renvoie l’indice dans T du plus petit suffixe "

imin=0
for i in range(len(T)):

if comparerSuffixe(tab,T[i],T[imin])==-1:
imin=i

return imin

def TriSuffixe(tab,T):
tabtrie=[]
while T!=[]:

imin=miniSuffixe(tab,T)

tabtrie.append(T.pop(imin))
return tabtrie

Question 11.

def comparerMotSuffixe(mot, tab, k):
suff = tab[k:]
m=len(mot)
if mot==suff[:m] :

return 0
for i in range(min(len(mot), len(suff))):

if suff[i] < mot[i]:
return 1

elif suff[i] > mot[i]:
return -1

comme mot!=suff[:m] si on arrive à la fin
de cette boucle c’est que suff est plus
petit que mot donc
return 1

Quelques commentaires : à la ligne 4, même si m est plus grand que la longueur de suff les
opérations de slicing en Python ne provoquent pas de out of range.

Ensuite à la fin de la boucle for, si celle-ci s’exécute jusqu’au bout c’est que les tranches de
mot et de suff jusqu’au min. de len(mot) et de len(suff) sont identiques. Or on a déjà passé le
cas où mot est au début de suff. Donc c’est que suff. est de longueur plus petite (strictement)
que mot (cas pas intéressant pour notre utilisation mais qu’importe).

Question 12

a) C’est une « question de cours »

def RechercheD(a,T):
" recherche a dans le tableau T déjà trié"
g=0
d=len(T)
while d-g>1 :

m=(g+d)//2
if T[m]==a:

return True
if T[m]<a:

g= m
else:

d= m
A ce stade on a g-d=1. on teste encore si T[g]==a
if T[g]==a : return True

return False

b) On doit ici faire la recherche dichotomique de mot dans le tableau ordonné des suffixes de
tab qui est tabS. On utilise donc comparerMotSuffixe mais l’indice qu’on donne pour le suffixe
dans tab est obtenue comme une valeur dans le tableau tabS.

def rechercherMot2(mot,tab,tabS):
g,d=0,len(tabS)
while d-g>1:

m=(g+d)//2
if comparerMotSuffixe(mot,tab,tabS[m])==-1:

d=m
if comparerMotSuffixe(mot,tab,tabS[m])==1:

g=m
else:

return True
if tab[tabS[g]:]==mot:

return True
return False

