D.S. 2 informatique commune MPSI 1

Question 0. a) On calcule : 65 = 64 + 1 = 25 + 1 donc son écriture binaire est 1000001
(écriture sur 7 bits).

Ensuite 97=64+32+1=65+32 ce qui s’écrit en binaire, sur 7 bits, 1100001.

Comme 97 — 65 = 32 = 2°, pour passer de I’écriture binaire d’une majuscule & une miniscule,
il suffit de modifier un seul bit (le bit numero 5 en appelant bit numéro 0 le bit des unités).

b) Le seul piege avec la méthode lower est qu’elle s’applique au type str non mutable. Donc
comme le dit d’ailleurs I’énoncé, elle retourne une nouvelle chalne de caracteres, mais elle ne
modifie pas la chaine a laquelle on I'applique, d’ou la nécessité de stocker sa valeur de retour dans
le programme ci-dessous. Ne pas oublier aussi la condition if numero>=97 and numero<=122:
qui fait qu’on ne codera que les caractéres correspondant a des lettres et pas les caractéres
spéciaux.

def ConvertitTexteEnTab(texte):

tab=[]

texteminus=texte.lower()

for 1lettre in texteminus:
numero=ord(lettre)
if numero>=97 and numero<=122:

tab.append (numero-97)
return tab

La fonction suivante est plus facile : attention seulement & ne pas utiliser de append pour les
chaines de caracteres. Le append ne s’applique qu’aux listes.

def ConvertitTabEnTexte(tab):
texte=""’
for valeur in tab:
texte=texte+chr (valeur+97)
return texte

Question 1. On donne deux versions. La premiere ne fait que des tests d’égalités d’entrées
de listes, ce qui permet de bien évaluer sa complexité, comme demandé ensuite par I’énoncé a la
question 2. La seconde s’autorise le test d’égalités entre listes, ce test faisant lui-méme la boucle
qu’on a programmé a la version 1.

def enTeteDeSuffixe(mot,tab,k):
suffixe = tabl[k:]
for i in range(len(mot)):
if mot[i]!=suffixel[i]:
return False
return True

def enTeteDeSuffixe2(mot,tab,k):
suffixe = tabl[k:]
m = len(mot)
return mot == suffixe[:m]

Question 2. La seule chose qui demande du soin est de savoir ot arréter le range de la boucle
for. La derniere position possible pour le début de mot est len(tab)-len(mot).

def rechercherMot (mot,tab):
for i in range(len(tab)-len(mot)+1):
if enTeteDeSuffixe(mot, tab, i):
return True
return False

Remarque : avec la fonction enTeteDeSuffixe2, on n’aura pas de out of range méme si on
écrit for i in range(len(tab)) dans rechercherMot. C’est un avantage du slicing.

Complexité : Aumaximum, sila boucle va a la fin, TeteDeSuffixe (mot,tab,k) feram=1len(mot)
tours de boucles, donc m tests d’égalités. Complexité en O(len(mot)).

En notant n = len(tab) et m = len(mot), 'appel de rechercherMot (mot,tab) va, au maxi-
mum effectuer n—m+1 tours de boucles et a chaque tour de boucles I’appel de enTeteDeSuffixe (mot,tab,i)
fait au plus m tests d’égalités élémentaires.

Au total, on fait donc au plus m(n —m + 1) < mn tours de boucles. La complexité est un
O(mn).

Question 3.

def compterOccurences(mot, tab):
n=20
for i in range(len(tab)-len(mot)+1):
if enTeteDeSuffixe(mot, tab, i):
n=n+1
return n

Question 4.

def frequenceLettre(tab):
1 = [0]*26
for lettre in tab:
1[lettre]l+=1
return 1

La fonction ci-dessous est en O(len(tab)). Une autre solution souvent utilisée est la suivante :

def f12(tab):
L=[0]*26
for i in range(26):
for j in range(len(tab)):
if tab[jl==i:
L[i]=L[i]l+1
return L

Comparaison d’efficacité : dans la fonction £12 on fait 26 x len(tab) test d’égalités en
plus. Il se trouve qu’en pratique cela change radicalement ’efficacité pratique comme le montre
le test suivant :

essai

from random import randint

tab=[]

for i in range(10000):
tab.append(randint (0,25))

from time import clock

a=clock()

frequencelettre(tab)

b=clock()

f12(tab)

c=clock()

print ("temps frequence lettre : ", b-a)

print ("temps f12",c-b)

Avec le résultat suivant :

temps frequence lettre : 0.0007429999999999382
temps £12 0.014185000000000336

Le temps est multiplié d’un facteur 50, méme si les deux algo. sont en O(len(tab)).

La fonction suivante donne le méme résultat mais a chaque tour de boucle, on a un ap-
pel a compterOccurence en O(len(tab)) Le probleme avec cette fonction est qu’elle appelle
enTeteDeSuffixe dans laquelle on a crée un tableau suffixe a chaque appel. Sur un grand
tableau, cela occasionne beaucoup d’affectations supplémentaires. Le résultat est spectaculaire.

def f13(tab):
1=[0]*26
for i in range(26):
1[il=compterOccurences([i],tab)
return 1

temps f13 2.522245

Le temps est 100 fois plus long qu’avec £12 et donc 5000 fois plus long qu’avec la premiere
fonction. Si on modifie la fonction enTeteDeSuffixe en enlevant la création de la liste suffixe
en remplagant suffixe[i] par tab[k+i] on diminue le temps d’'un facteur 10.

N.B. En outre, pour les grandes listes Python, il n’est pas vrai que l'acces a toutes les entrées
se fait avec le méme temps.

Question 5.

Il est demandé que la fonction affiche les mots de deux lettres et leur fréquence. On utilise
donc la commande print et les résultats sont affichés sous la forme mot : fréquence.

Une premiere version vue sur le copies est la suivante :

def AFB_naif(tab):
for i in range(len(tab)-1):
mot=tab[i:i+2]
print(mot,":",compterOccurences(mot,tab))

Cette fonction présente le défaut de faire des affichages multiples... elle affichera chaque mot
autour de fois qu’il apparait.

def AFB(tab):
LettresPresentes=[]
freq=frequenceLettre(tab)
for i in range(26):
if freq[i]!=0:
LettresPresentes.append (i)
on a frabriqué un tableau, sans répétition, des lettres présentes dans tab
for n in LettresPresentes: # parcours des valeurs !
for k in LettresPresentes:
occ=compterOccurences([n,k],tab)
if acc!=0:
print([n,k],"repeté",occ,"fois")

Question 6.

def minimum(tab):
temoin=tab [0]
imin=0
for i in range(len(tab)):
if tab[i]<temoin:
imin=i
temoin=tab[i]
return (temoin,imin)

Question 7

def TriSelect(tab):
tabtrie=[]
while tab!=[]:
imin=minimum(tab) [1]

tabtrie.append(tab.pop(imin))
return tabtrie

Question 8

La fonction minimum effectue exactement n comparaisons tab[i]<temoin : une comparaison
par tour de boucles. La fonction TriSelect effectue n appel a la fonction minimum : un par tour
de boucles. Donc n x n = n? comparaisons.

Question 9

def comparerSuffixe(tab,kl,k2):
suffl = tabl[kl:]
suff2 = tab[k2:]

if suffl == suff2:# ne se produit que si kl==k2
return O # car sinon les suffixes sont de longueurs
différentes !
for i in range(min(len(suffl), len(suff2))):
if suffi1[i] < suff2[i]:
return -1
elif suffi[i] > suff2[i]:
return 1
if len(suffil)<len(suff2):
return -1
else :
return 1

Question 10 On doit modifier la fonction minimum pour qu’elle calcule le minimum pour
Pordre lexicographique, autrement dit, on remplace ’ordre usuel < qui apparait dans la fonction
minimum par comparerSuffixes. Il faut pendre bien garde d’utiliser les valeurs de T.

Les valeurs T[i] représenteront des numéros de suffixes de tab.

La fonction miniSuffixe renvoie I'indice dans T de la plus petite valeur T[i]. C’est important
de comprendre cette différence indice/valeur dés qu’on va faire des pop dans T.

def miniSuffixe(tab,T):
"renvoie 1l’indice dans T du plus petit suffixe "
imin=0
for i in range(len(T)):
if comparerSuffixe(tab,T[i],T[imin])==-1:
imin=i
return imin

def TriSuffixe(tab,T):
tabtrie=[]
while T!=[]:
imin=miniSuffixe(tab,T)

tabtrie.append(T.pop(imin))
return tabtrie

Question 11.

def comparerMotSuffixe(mot, tab, k):
suff = tablk:]
m=len (mot)
if mot==suff[:m]

return O
for i in range(min(len(mot), len(suff))):
if suffl(i] < mot[i]:
return 1
elif suff[i] > mot[i]:
return -1
comme mot!=suff[:m] si on arrive & la fin
de cette boucle c’est que suff est plus
petit que mot donc
return 1

Quelques commentaires : a la ligne 4, méme si m est plus grand que la longueur de suff les
opérations de slicing en Python ne provoquent pas de out of range.

Ensuite a la fin de la boucle for, si celle-ci s’exécute jusqu’au bout c’est que les tranches de
mot et de suff jusqu’au min. de len(mot) et de len(suff) sont identiques. Or on a déja passé le
cas ot mot est au début de suff. Donc c’est que suff. est de longueur plus petite (strictement)
que mot (cas pas intéressant pour notre utilisation mais qu’importe).

Question 12
a) C’est une « question de cours »

def RechercheD(a,T):
" recherche a dans le tableau T déja trié"
g=0
d=len(T)
while d-g>1
m=(g+d) //2
if T[m]==a:
return True
if T[ml<a:
g=m
else:
d=m
A ce stade on a g-d=1. on teste encore si T[g]==
if T[gl==a : return True

return False

b) On doit ici faire la recherche dichotomique de mot dans le tableau ordonné des suffixes de
tab qui est tabS. On utilise donc comparerMotSuffixe mais I'indice qu’on donne pour le suffixe
dans tab est obtenue comme une valeur dans le tableau tabS.

def rechercherMot2(mot,tab,tabS):
g,d=0,len(tabs)
while d-g>1:
m=(g+d)//2
if comparerMotSuffixe(mot,tab,tabS[m])==-1:
d=m
if comparerMotSuffixe(mot,tab,tabS[m])==1:
g=m
else:
return True
if tab[tabS[g]:]==mot:
return True
return False

