MPST 2018-2019 Informatique

Concours blanc

La résolution d’une grille de Sudoku est une gymnastique du cerveau qui peut étre assimilée & un
décodage correcteur d’effacement. En effet, & partir d’une grille presque vide, il est possible (pour une
grille bien faite) de la compléter d’une maniére unique. L’objectif de cet exercice est de mettre en ceuvre
deux méthodes permettant de compléter une grille de Sudoku, 'une naive, et 'autre par backtracking.

Une grille de Sudoku est une grille de taille 9 x 9 découpée en 9 carrés de taille 3 x 3. Le but est de
la remplir de chiffres entre 1 et 9, de sorte que chaque ligne, chaque colonne et chacun des carrés de
taille 3 x 3 contienne une et une seule fois chaque entier de 1 &4 9. On dira alors que la grille est bien
remplie. En pratique, certaines cases sont déja remplies et on fera ’hypothése que le Sudoku qui nous
intéresse est bien écrit, ¢’est-a-dire qu’il posséde une unique solution.

On représente en Python une grille de Sudoku par une liste de taille 9 x 9, ¢’est-a-dire une liste de 9
listes de taille 9, dans laquelle les cases non remplies sont associées au chiffre 0. Ainsi, la grille suivante
est représentée par la liste ci-contre :

6 2 5
4 921
7 8 1
L-[[0,6,0,0,0,0,2,05 , [40,0,92,1,0,0,0]
5 9 [0,7,0,0,0,8,0,0,1] , [0,0,0,0,0,5,0,0,9],
6|4 713 6,4,0,0,0,0,0,7,3] , [1,0,0,4,0,0,0,0,0],
. 1 [3,0,0,7,0,0,0,6,0] , [0,0,0,1,4,6,0,0,2],
[2,0,6,0,0,0,0,1,0]]
3 7 6
1146 2
2 6 1

Les 9 carrés de taille 3 x 3 sont numérotés du haut & gauche jusqu’en bas & droite. Ainsi, sur cette
grille, le carré 0, en haut & gauche, contient les chiffres 6, 4 et 7; le carré 1, en haut au milieu, contient
les chiffres 9, 2, 1 et 8; le carré 8 contient les chiffres 6, 2 et 1.

On rappelle que les lignes du Sudoku sont alors les éléments de L accessible par L[0],... ,L[8].
L’élément de la case (7,7) est accessible par L[i] [j].

Remarque : on fera bien attention, dans I’ensemble du sujet, aux indices des listes. Les lignes, ainsi
que les colonnes, sont indicées de 0 a 8.

Partie A. Généralités et fonctions annexes

Ecrire une fonction rechercheDansListe(elt, L) qui renvoie la position de I’élément elt dans
la liste L. Si I’élément n’est pas trouvé dans la liste, la fonction devra retourner -1. Par exemple

>>> rechercheDansListe(3, [1,7,3,4])
2
>>> rechercheDansListe(6, [1,7,3,4])
-1

Déterminer la complexité en temps de la fonction rechercheDansListe en fonction de n = len(L)
dans le pire des cas. Pour cela on comptera uniquement les comparaisons.

Si une grille de Sudoku est bien remplie, que peut-on dire de la somme de chaque ligne, chaque
colonne et chaque carré de taille 3 x 37

On va commencer par écrire des fonctions permettant de vérifier si un Sudoku est bien rempli.

Ecrire une fonction ligneBienRemplie(L,i) qui prend une liste de Sudoku L et un entier i entre
0 et 8, et renvoie True si la ligne est bien remplie et False sinon. On rappelle que la ligne ¢ est
bien remplie si elle contient exactement les chiffres de 1 & 9.

On définit de méme (on ne demande pas les écrire) les fonctions colonneBienRemplie(L,i)
pour la colonne ¢ et carréBienRempli(L,i) pour le carré i.

Ecrire une fonction bienRempli(L) qui prend une liste de Sudoku L comme argument, et qui
renvoie True si la grille est bien remplie, False sinon.

Compléter la fonction suivante ligne(L,1,j) qui renvoie la liste des nombres compris entre 1 et
9 qui apparaissent sur la ligne d’indice i en ne tenant pas compte de L[i] [j] .

def ligne(L,i,j)
chiffre = []
for k in
if ..., :
chiffre.append(L[i] [k])
return(chiffre)

Ainsi, avec la grille donnée dans I’énoncé, on doit obtenir :

>>> 1ligne(L,0,0)
[6,2,5]

>>> ligne(L,0,1)
[2,5]

On définit alors, de la méme maniére, la fonction colonne(L,i,j) qui renvoie la liste des nombres
compris entre 1 et 9 qui apparaissent dans la colonne j excepté L[i] [j] (on ne demande pas
d’écrire son code).

On se donne une case (4,7), avec (i,4) dans {0,...,8}2. On admet que la case en haut & gauche
du carré 3 x 3 auquel appartient la case (7,j) a pour coordonnées :

J

3

(5] 2+ 15))

ou [x] représente la partie entiére de x.
Compléter alors la fonction carre(L,i,j) qui renvoie la liste des nombres compris entre 1 et 9
qui apparaissent dans le carré 3 x 3 auquel appartient la case (7, ;) toujours sans tenir compte de

la case (i,7).

def carre(L,i,j)
icoin = 3%(i//3)
jcoin = 3x(j//3)
chiffre = []
for x in range(

for y in range(.....)
if ..., :
chiffre.append(L[x] [y])
return(chiffre)

On rappelle que si z et y sont des entiers, z//y renvoie le quotient de la division euclidienne de z
par y. Ainsi, avec la grille donnée dans 1’énoncé, on doit obtenir :

>>> carre(L,4,6)
[9,7,3]

>>> carre(L,4,7)
[9,3]

Déduire des questions précédentes une fonction conflit(L,1i,j) renvoyant la liste des chiffres
que l'on ne peut pas écrire en case (i,7) sans contredire les régles du jeu. La liste envoyée peut
trés bien comporter des redondances. On ne prendra pas en compte la valeur de L[i] [j]

Compléter enfin la fonction chiffresOk(L,i,j) qui renvoie la liste des chiffres que 'on peut

écrire en case (i,]).

def chiffresOk(L,1i,j)
listeOk = []
listeConf =
for k in :
if rechercheDansListe(
listeOk.append (k)
return(listeOk)

conflit(L,i,j)

Par exemple, avec la grille initiale :

>>> chiffres0k(L,4,2)
[21 ‘5> 8’ 9]

On pourra, dans la suite du sujet, utiliser les fonctions annexes définies précédemment.

Partie B. Algorithme naif

Naivement, on commence par compléter les cases n’ayant qu’une seule possibilité. Nous prendrons

dans la suite comme Sudoku :

19 8 7|4
8 | 4 612
M=[[2,0,0,0,9,0,3,0,0]
519 621 [0,0,8,4,0,0,6,2,0]
2|7 116 [0,2,7,0,0,0,1,6,0]
5174 913 [0,8,5,0,0,9,7,0,0]
0,0,2,0,6,0,0,0,1]
8|95 91| 7
913 5 8|4
2 6 1

[0,1,9,0,8,0,0,7,4],
[5,9,0,6,2,1,0,0,0],
[0,0,0,5,7,4,0,9,3],
[9,3,0,0,5,0,8,4,0],

A partir des fonctions écrites dans la partie A, écrire une fonction nbPossible(L,1,j) indiquant

le nombre de chiffres possibles a la case (1, 7).

On souhaite disposer de la fonction unTour (L) qui parcourt 'ensemble des cases du Sudoku et
qui compléte les cases dans le cas ou il n’y a qu’un chiffre possible, et renvoie True s’il y a eu un
changement, et False sinon. La liste L est alors modifiée par effet de bords.

Par exemple, en partant de la grille initiale M :

>>> unTour (M)

True

>>>

M= [[2,0,0,0,9,0,3,0,0], [0,1,9,0,8,0,0,7,4],
(o,0,8,4,0,0,6,2,9]1, [5,9,0,6,2,1,4,8,7],
(0,2,7,0,3,8,1,6,51, [0,6,1,5,7,4,2,9,3],
(o,8,5,0,0,9,7,3,01, [9,3,6,0,5,0,8,4,2],
[0,0,2,0,6,0,9,5,1]1]

On propose la fonction suivante :

def unTour(L)
changement = False
for i in range(1,9)
for j in range(1,9) :
if L[i][j] = 0 :
if nbPossible(L,i,j) =1 :
L[i]1[j] = chiffresOk(L,i,j) [1]
return(changement)

Recopier ce code en corrigeant les erreurs. Vous mettrez les parties modifiées ou ajoutées d’une

couleur différente.

Ecrire une fonction complete (L) qui exécute la fonction unTour tant qu’elle modifie la liste, et

renvoie True si la grille est complétée, et False sinon.

Partie C. Backtracking.

La deuxiéme idée est de résoudre la grille par "Backtracking" ou "retour-arriére". L’objectif est
d’essayer de compléter la grille de Sudoku en testant les combinaisons, en commencant par la premiére
case, et jusqu’a la derniére. Si on obtient un conflit avec les régles, on est obligé de revenir en arriére.
On va compléter la grille en utilisant 'ordre lexicographique, c’est a dire les cases (0,0), (0,1), ...(0,8)
puis (1,0), (1,1), ... (1,8), (2,0), ...(8,8). Considérons pour cette partie le Sudoku :

21514 9(6] 3
1 714
4 6
M=| [2,5,4,0,9,6,3,00] , [0,1,9,0,8,0,0,7,4],
519 6121 0,0,8,4,0,0,6,2,0] , [5,9,0,6,2,1,0,0,0],
2| 7 16 0,2,7,0,0,0,1,6,0] , [0,0,0,5,7,4,0,9,3],
=17 12 NE 0,8,5,0,0,9,7,0,0] , [9,3,0,0,5,0,8,4,0],
0,0,2,0,6,0,0,0,1]]
8|5 91 7
9|3 5 8| 4
9 6 1

Ecrire une fonction caseSuivante (pos) qui prend une liste pos qui est le couple des coordonnées de
la case, et renvoie le couple des coordonnées de la case suivante en utilisant 1'ordre lexicographique.
Elle devra renvoyer [9,0] si pos=[8,8]. Par exemple :

>>> caseSuivante([1,3])
[1, 4]
>>> caseSuivante([1,8])
[2, 0]
>>> caseSuivante([8,8])
[9, 0]

Q14| Ecrire une fonction caseLibreSuivante(pos, L) qui & partir des coordonnées d’une case pos et
du Sudoku L donne la prochaine case contenant 0 dans le sudoku.

>>> caseLibreSuivante([0,0])

[0, 3]

>>> caseLibreSuivante([1,6])
[2, 0]

>>> caseLibreSuivante([-1,8])
[0, 3]

>>> caseLibreSuivante([8,7])
[9, 0]

On définit alors, de la méme maniére, la fonction caseLibrePrecedente(pos, L) qui renvoie les
coordonnées de la premiére case contenant 0 avant la position pos. S’il n’y en a pas, la fonction
renvoie la position [-1,8]. On ne demande pas d’écrire son code.

On considére le programme suivant :

def solutionSudoku(L)
M = deepcopy (L)

pos = caseLibreSuivante([-1,8], L)

while pos[0]>=0 and pos[0]<=8 :

Elt = M[pos[0]] [pos[1]]

M[pos[0]] [pos[1]] = 0

listeChiffresOk = chiffresOk(M, pos[0], pos[1])
if len(listeChiffresQk)==0 :

pos=caseLibrePrecedente(pos, L)

elif E1t==0 :

M[pos[0]] [pos[1]]=1listeChiffres0k[0]
pos=caseLibreSuivante(pos, L)

else :
i =

rechercheDansListe(Elt, listeChiffresOk)

if i==len(listeChiffresOk)-1 :

return(M)

pos=caseLibrePrecedente(pos, L)
else :

M[pos[0]] [pos[1]] = listeChiffresOk[i+1]

pos=caseLibreSuivante (pos, L)

On rappelle que M = deepcopy (L) effectue une copie du Sudoku L et le met dans la variable
M. Donner la valeur des variables a la fin de chacun des 5 premiers tours de la boucle while en
remplissant le tableau suivant. Attention, pour la valeur de M, on ne demande que la premiére

ligne.

Num. boucle

pos

Elt

listeChiffresOk

MIo]

ot "Num. boucle" signifie le numéro du passage dans la boucle while. On rappelle que par

convention, le numéro 0 est I’état des variables avant ’entrée dans la boucle.

Que peut-on dire du Sudoku si 'on sort de la boucle while avec pos[0]1<0? pos[0]>87 Avec les

hypotheéses du probléme, ne peut-on pas réduire ces conditions ?

Le but des derniéres questions est de prouver I'algorithme solutionSudoku. Chaque tour de la

Q18

boucle while sera repéré par le couple de variables (M, pos) pris en fin de boucle. Montrer que :
— Les cases strictement inférieures & pos ne contiennent pas de 0.

— Les cases strictement supérieures a pos et non pré-remplies sont toutes nulles.

— Les cases remplies vérifient les régles du Sudoku.

Pour chaque couple (M, pos), on définit sa liste de référence Lref (M, pos) comme étant la liste
des valeurs des cases du Sudoku de la position [0,0] a la position pos y compris, a laquelle on a
ajouté en fin de liste 'entier 10. Ainsi par exemple, avec le Sudoku du début de la partie C, on a :

>>>Lref (M, [0,2])
[2,5,4,10]
>>>Lref (M, [0,3])
[2,5,4,0,10]

On dira que (Mji,pos1) < (Ma,posy) si et seulement si Lref (M, posi) < Lref(Ma, posa) ; les
listes de références étant comparées a ’aide de 'ordre lexicographique. Il est clair que la relation
ainsi définie est réflexive et transitive. Montrer qu’elle est également antisymétrique sur ’ensemble
des couples (M, pos) parcourus par l'algorithme.

Montrer qu’a chaque tour de boucle le couple (M, pos) est strictement plus grand qu’a la fin du

tour précédent. En déduire que la boucle while se termine et que si en sortie, la valeur de pos[0]
est 9, le sudoku renvoyé est valide.

MPST 2018-2019 Correction informatique

Concours blanc

La fonction rechercheDansListe peut s’écrire :

def rechercheDansListe(elt, L)
for i in range(0, len(L))
if L[i]==elt :
return(i)
return(-1)

Dans le pire des cas, il y a n comparaisons. L’algorithme est en O(n).

Si la grille est bien remplie, la somme des éléments d’une ligne est 1+24-3-+4+5-+6-+7+8+9 puisque
cette somme ne change pas si on trie les termes dans l'ordre croissant. De méme pour les colonnes
et les carrés 3 x 3

La fonction qui teste si une ligne est bien remplie peut s’écrire :

def ligneBienRemplie(L,i):
chifTrouvé = [1]+[0]*9
chifTrouvé[i]=1 si le chiffre i est déja apparu, O sinon.
for j in range(0,9)
Chif = L[il[j]
if chifTrouvé[Chif]==1 :
return(False)
else :
chifTrouvé[Chif]=1
return(True)

La fonction qui teste si une grille est bien remplie peut alors s’écrire :

def bienRempli(L):
for i in range(0,9):
if ligneBienRemplie(L,i)==False :
return(False)
if colonneBienRemplie(L,i)==False :
return(False)
if carreBienRempli(L,i)==False :
return(False)
return(True)

Le code de la fonction ligne de I’énoncé, une fois complété, ressemble & ceci :

def ligne(L,i,j):
chiffre = []
for k in range(0,9):
if L[i][k]1>0 and k!=j:
chiffre.append(L[i] [j])
return chiffre

La fonction attendue dans 1’énoncé est celle-ci :

def carre(L,i,j):

icoin = 3%(i//3)
jcoin = 3*(j//3)
chiffre = []
for x in range(icoin, icoin+3)

for y in range(jcoin, jcoin+3)

if (Lx]lyl > 0 and (x,y)'=(i,j)):
chiffre.append(L[x] [y])

return chiffre

La fonction conflit attendue dans I’énoncé peut ressembler & ceci :

def conflit(L,i,j):
return(ligne(L,i,j)+colonne(L,i,j)+carre(L,i,j))

La fonction complétée ressemble maintenant a ceci :

def chiffres0k(L,i,j):
listeOk = []
listeConf = conflit(L,i,j)
for k in range(1,10):
if rechercheDansListe(k, listeConf)==-
listeOk.append (k)
return(listeOk)

Les chiffres que 'on peut écrire a la case (7,j) peuvent alors étre calculés avec

def nbPossible(L,i,j):
return(len(chiffresOk(L,i,j)))

Les erreurs volontairement introduites concernaient 'indexation & partir de 0, le double-égal pour
les tests et 'oubli de la modification de la variable changement. La fonction "corrigée" est celle-ci :

def unTour(L):
changement = False
for i in range(9):
for j in range(9):
if (LLi1[3] == 0):
if (nbPossible(L,i,j) == 1):

L[i]1[j] = chiffresOk(L,1i,j) [0]
changement = True

return(changement)

La fonction qui applique I'algorithme "naif" est celle-ci :

def complete(L):
pasFini = True
while pasFini :
pasFini = un_tour(L)
return(bienRempli (L))

La fonction caseSuivante balaie, ligne par ligne, le sudoku :

def caseSuivante(pos):
if pos[1]<8 :
return([pos[0],pos[1]+1])
else:
return([pos[0]+1,0])

La fonction caseLibreSuivante peut s’écrire :

def caseLibreSuivante(pos, L)
pos2 = caseSuivante(pos)
while pos2!=[9,0] and L[pos2[0]][pos2[1]]1>0 :
pos2 = caseSuivante(pos2)
return(pos2)

Voici le tableau des valeurs des variables rempli.

Num. boucle pos Elt listeChiffresOk M|0]
0 0, 3] X X 2,5,4,0,9,6,3,0,0]
1 [0, 7] 0 1, 7] 2,5 4,1,9,6,3,0, 0]
2 [0, 8] 0 8] [2,5,4,1,9,6, 3,8, 0]
3 [0, 7] 0 | 2,5,4,1,9,6,3,0, 0]
4 [0, 3] 8 8] [2,5,4,0,9,6, 3,0, 0]
5 [0, 7] 1 1, 7] 2,5,4,7,9,6,3,0, 0]

10

La variable E1t permet non seulement de mémoriser la case que 'on est en train de traiter, mais
elle permet également de savoir si la position de la case précédente était plus grande ou plus petite
que celle actuelle. En effet E1t est nul si on vient d’une case antérieure et non nul dans le cas
contraire.

Si pos[0]<0 en sortie de la boucle while, le sudoku n’a pas de solution. Si pos[0]>8, I’al-
gorithme a trouvé une solution. Dans I’énoncé, on fait I’hypothése que le Sudoku a une unique
solution, on peut donc se contenter de while pos[0]<=8.

Montrons ces propriétés par récurrence.

Initialisation. L’instruction pos = caseLibreSuivante([-1,8],L) nous positionne sur la pre-
miére case libre du Sudoku. Les cases qui précédent ne peuvent donc pas contenir de 0, les cases
suivantes qui ne sont pas pré-remplies ne contiennent que des 0. Enfin, on a fait I’hypothése que
le Sudoku de départ vérifiait les régles.

Hérédité. On remarque que dans la boucle while, soit on met la case actuelle & 0 et on va vers la
case précédente, soit on met un chiffre de la liste chiffresOk et on va vers la case suivante. Ces 2
actions conservent les 4 propriétés de 1’énoncé.

Soient (M7, pos1) et (Ma, pose) ayant la méme liste de référence. En particulier, ces listes sont de
méme longueur, on a donc pos; = posa. De plus, les Sudokus jusqu’a la position pos; = posa sont
identiques et aprés sont remplis de 0 d’aprés la question précédente. On a donc aussi M7 = Ms.

Soit L =[...,a,b,10] la liste de référence a un instant donné. Il y a plusieurs possibilités :

e len(listeChiffres0k)==0. Dans ce cas L devient L =[...,a,10] qui est supérieur.

e E1t==0. Alors la liste L vaut L = [...,a,0,10] et devient de la forme L = [...,a,c,0,10],
avec c € {1,...,9} qui est supérieur.

e E1t==0 et i==len(listeChiffresOk)-1. Comme dans le cas 1, la liste L devient L =
[...,a,10] qui est toujours supérieur.

e E1t==0 et i!'=len(listeChiffresOk)-1. Enfin la liste devient L =[...,a,¢,10] avec ¢ > b
qui est donc supérieur.

Dans tous les cas la liste de référence croit strictement. Comme ’ensemble des listes de référence
est fini, la boucle s’arréte. Si pos[0] vaut 9 en sortie de boucle, on utilise la propriété 1 de la
question 17 qui affirme que toutes les cases sont remplies et la propriété 4 pour la validité du
Sudoku.

11

