
MPSI 2018-2019 Informatique
Concours blanc

La résolution d’une grille de Sudoku est une gymnastique du cerveau qui peut être assimilée à un
décodage correcteur d’effacement. En effet, à partir d’une grille presque vide, il est possible (pour une
grille bien faite) de la compléter d’une manière unique. L’objectif de cet exercice est de mettre en œuvre
deux méthodes permettant de compléter une grille de Sudoku, l’une naïve, et l’autre par backtracking.

Une grille de Sudoku est une grille de taille 9 × 9 découpée en 9 carrés de taille 3 × 3. Le but est de
la remplir de chiffres entre 1 et 9, de sorte que chaque ligne, chaque colonne et chacun des carrés de
taille 3 × 3 contienne une et une seule fois chaque entier de 1 à 9. On dira alors que la grille est bien
remplie. En pratique, certaines cases sont déjà remplies et on fera l’hypothèse que le Sudoku qui nous
intéresse est bien écrit, c’est-à-dire qu’il possède une unique solution.

On représente en Python une grille de Sudoku par une liste de taille 9 × 9, c’est-à-dire une liste de 9
listes de taille 9, dans laquelle les cases non remplies sont associées au chiffre 0. Ainsi, la grille suivante
est représentée par la liste ci-contre :

6 2 5

4 9 2 1

7 8 1

5 9

6 4 7 3

1 4

3 7 6

1 4 6 2

2 6 1

L=[[0,6,0,0,0,0,2,0,5] , [4,0,0,9,2,1,0,0,0],
[0,7,0,0,0,8,0,0,1] , [0,0,0,0,0,5,0,0,9],
[6,4,0,0,0,0,0,7,3] , [1,0,0,4,0,0,0,0,0],
[3,0,0,7,0,0,0,6,0] , [0,0,0,1,4,6,0,0,2],
[2,0,6,0,0,0,0,1,0]]

Les 9 carrés de taille 3 × 3 sont numérotés du haut à gauche jusqu’en bas à droite. Ainsi, sur cette
grille, le carré 0, en haut à gauche, contient les chiffres 6, 4 et 7 ; le carré 1, en haut au milieu, contient
les chiffres 9, 2, 1 et 8 ; le carré 8 contient les chiffres 6, 2 et 1.

On rappelle que les lignes du Sudoku sont alors les éléments de L accessible par L[0],. . . ,L[8].
L’élément de la case (i, j) est accessible par L[i][j].

Remarque : on fera bien attention, dans l’ensemble du sujet, aux indices des listes. Les lignes, ainsi
que les colonnes, sont indicées de 0 à 8.

1

Partie A. Généralités et fonctions annexes

Q1 Écrire une fonction rechercheDansListe(elt, L) qui renvoie la position de l’élément elt dans
la liste L. Si l’élément n’est pas trouvé dans la liste, la fonction devra retourner -1. Par exemple

>>> rechercheDansListe(3, [1,7,3,4])
2
>>> rechercheDansListe(6, [1,7,3,4])
-1

Q2 Déterminer la complexité en temps de la fonction rechercheDansListe en fonction de n = len(L)

dans le pire des cas. Pour cela on comptera uniquement les comparaisons.

Q3 Si une grille de Sudoku est bien remplie, que peut-on dire de la somme de chaque ligne, chaque
colonne et chaque carré de taille 3 × 3 ?

Q4 On va commencer par écrire des fonctions permettant de vérifier si un Sudoku est bien rempli.

Écrire une fonction ligneBienRemplie(L,i) qui prend une liste de Sudoku L et un entier i entre
0 et 8, et renvoie True si la ligne est bien remplie et False sinon. On rappelle que la ligne i est
bien remplie si elle contient exactement les chiffres de 1 à 9.

On définit de même (on ne demande pas les écrire) les fonctions colonneBienRemplie(L,i)
pour la colonne i et carréBienRempli(L,i) pour le carré i.

Q5 Écrire une fonction bienRempli(L) qui prend une liste de Sudoku L comme argument, et qui
renvoie True si la grille est bien remplie, False sinon.

Q6 Compléter la fonction suivante ligne(L,i,j) qui renvoie la liste des nombres compris entre 1 et
9 qui apparaissent sur la ligne d’indice i en ne tenant pas compte de L[i][j] .

def ligne(L,i,j) :
chiffre = []
for k in :

if :
chiffre.append(L[i][k])

return(chiffre)

Ainsi, avec la grille donnée dans l’énoncé, on doit obtenir :

>>> ligne(L,0,0)
[6,2,5]
>>> ligne(L,0,1)
[2,5]

On définit alors, de la même manière, la fonction colonne(L,i,j) qui renvoie la liste des nombres
compris entre 1 et 9 qui apparaissent dans la colonne j excepté L[i][j] (on ne demande pas
d’écrire son code).

2

Q7 On se donne une case (i, j), avec (i, j) dans {0, . . . ,8}2. On admet que la case en haut à gauche
du carré 3 × 3 auquel appartient la case (i, j) a pour coordonnées :

(3 × [
i

3
] , 3 × [

j

3
])

où [x] représente la partie entière de x.
Compléter alors la fonction carre(L,i,j) qui renvoie la liste des nombres compris entre 1 et 9
qui apparaissent dans le carré 3 × 3 auquel appartient la case (i, j) toujours sans tenir compte de
la case (i, j).

def carre(L,i,j) :
icoin = 3*(i//3)
jcoin = 3*(j//3)
chiffre = []
for x in range(.....) :

for y in range(.....) :
if :

chiffre.append(L[x][y])
return(chiffre)

On rappelle que si x et y sont des entiers, x//y renvoie le quotient de la division euclidienne de x
par y. Ainsi, avec la grille donnée dans l’énoncé, on doit obtenir :

>>> carre(L,4,6)
[9,7,3]
>>> carre(L,4,7)
[9,3]

Q8 Déduire des questions précédentes une fonction conflit(L,i,j) renvoyant la liste des chiffres
que l’on ne peut pas écrire en case (i, j) sans contredire les règles du jeu. La liste envoyée peut
très bien comporter des redondances. On ne prendra pas en compte la valeur de L[i][j]

Q9 Compléter enfin la fonction chiffresOk(L,i,j) qui renvoie la liste des chiffres que l’on peut
écrire en case (i, j).

def chiffresOk(L,i,j) :
listeOk = []
listeConf = conflit(L,i,j)
for k in :

if rechercheDansListe(..... :
listeOk.append(k)

return(listeOk)

Par exemple, avec la grille initiale :

>>> chiffresOk(L,4,2)
[2, 5, 8, 9]

On pourra, dans la suite du sujet, utiliser les fonctions annexes définies précédemment.

3

Partie B. Algorithme naïf
Naïvement, on commence par compléter les cases n’ayant qu’une seule possibilité. Nous prendrons

dans la suite comme Sudoku :

2 9 3

1 9 8 7 4

8 4 6 2

5 9 6 2 1

2 7 1 6

5 7 4 9 3

8 5 9 7

9 3 5 8 4

2 6 1

M=[[2,0,0,0,9,0,3,0,0] , [0,1,9,0,8,0,0,7,4],
[0,0,8,4,0,0,6,2,0] , [5,9,0,6,2,1,0,0,0],
[0,2,7,0,0,0,1,6,0] , [0,0,0,5,7,4,0,9,3],
[0,8,5,0,0,9,7,0,0] , [9,3,0,0,5,0,8,4,0],
[0,0,2,0,6,0,0,0,1]]

Q10 A partir des fonctions écrites dans la partie A, écrire une fonction nbPossible(L,i,j) indiquant
le nombre de chiffres possibles à la case (i, j).

Q11 On souhaite disposer de la fonction unTour(L) qui parcourt l’ensemble des cases du Sudoku et
qui complète les cases dans le cas où il n’y a qu’un chiffre possible, et renvoie True s’il y a eu un
changement, et False sinon. La liste L est alors modifiée par effet de bords.
Par exemple, en partant de la grille initiale M :

>>> unTour(M)
True
>>>
M = [[2,0,0,0,9,0,3,0,0], [0,1,9,0,8,0,0,7,4],

[0,0,8,4,0,0,6,2,9], [5,9,0,6,2,1,4,8,7],
[0,2,7,0,3,8,1,6,5], [0,6,1,5,7,4,2,9,3],
[0,8,5,0,0,9,7,3,0], [9,3,6,0,5,0,8,4,2],
[0,0,2,0,6,0,9,5,1]]

On propose la fonction suivante :

def unTour(L) :
changement = False
for i in range(1,9) :

for j in range(1,9) :
if L[i][j] = 0 :

if nbPossible(L,i,j) = 1 :
L[i][j] = chiffresOk(L,i,j)[1]

return(changement)

Recopier ce code en corrigeant les erreurs. Vous mettrez les parties modifiées ou ajoutées d’une
couleur différente.

Q12 Écrire une fonction complete(L) qui exécute la fonction unTour tant qu’elle modifie la liste, et
renvoie True si la grille est complétée, et False sinon.

4

Partie C. Backtracking.
La deuxième idée est de résoudre la grille par "Backtracking" ou "retour-arrière". L’objectif est

d’essayer de compléter la grille de Sudoku en testant les combinaisons, en commençant par la première
case, et jusqu’à la dernière. Si on obtient un conflit avec les règles, on est obligé de revenir en arrière.
On va compléter la grille en utilisant l’ordre lexicographique, c’est à dire les cases (0, 0), (0, 1), . . . (0, 8)
puis (1,0), (1,1), . . . (1,8), (2,0), . . . (8,8). Considérons pour cette partie le Sudoku :

2 5 4 9 6 3

1 9 8 7 4

8 4 6 2

5 9 6 2 1

2 7 1 6

5 7 4 9 3

8 5 9 7

9 3 5 8 4

2 6 1

M=[[2,5,4,0,9,6,3,0,0] , [0,1,9,0,8,0,0,7,4],
[0,0,8,4,0,0,6,2,0] , [5,9,0,6,2,1,0,0,0],
[0,2,7,0,0,0,1,6,0] , [0,0,0,5,7,4,0,9,3],
[0,8,5,0,0,9,7,0,0] , [9,3,0,0,5,0,8,4,0],
[0,0,2,0,6,0,0,0,1]]

Q13 Écrire une fonction caseSuivante(pos) qui prend une liste pos qui est le couple des coordonnées de
la case, et renvoie le couple des coordonnées de la case suivante en utilisant l’ordre lexicographique.
Elle devra renvoyer [9,0] si pos=[8,8]. Par exemple :

>>> caseSuivante([1,3])
[1, 4]
>>> caseSuivante([1,8])
[2, 0]
>>> caseSuivante([8,8])
[9, 0]

Q14 Écrire une fonction caseLibreSuivante(pos, L) qui à partir des coordonnées d’une case pos et
du Sudoku L donne la prochaine case contenant 0 dans le sudoku.

>>> caseLibreSuivante([0,0])
[0, 3]
>>> caseLibreSuivante([1,6])
[2, 0]
>>> caseLibreSuivante([-1,8])
[0, 3]
>>> caseLibreSuivante([8,7])
[9, 0]

On définit alors, de la même manière, la fonction caseLibrePrecedente(pos, L) qui renvoie les
coordonnées de la première case contenant 0 avant la position pos. S’il n’y en a pas, la fonction
renvoie la position [-1,8]. On ne demande pas d’écrire son code.

5

Q15 On considère le programme suivant :

def solutionSudoku(L) :
M = deepcopy(L)
pos = caseLibreSuivante([-1,8], L)
while pos[0]>=0 and pos[0]<=8 :

Elt = M[pos[0]][pos[1]]
M[pos[0]][pos[1]] = 0
listeChiffresOk = chiffresOk(M, pos[0], pos[1])
if len(listeChiffresOk)==0 :

pos=caseLibrePrecedente(pos, L)
elif Elt==0 :

M[pos[0]][pos[1]]=listeChiffresOk[0]
pos=caseLibreSuivante(pos, L)

else :
i = rechercheDansListe(Elt, listeChiffresOk)
if i==len(listeChiffresOk)-1 :

pos=caseLibrePrecedente(pos, L)
else :

M[pos[0]][pos[1]] = listeChiffresOk[i+1]
pos=caseLibreSuivante(pos, L)

return(M)

On rappelle que M = deepcopy(L) effectue une copie du Sudoku L et le met dans la variable
M. Donner la valeur des variables à la fin de chacun des 5 premiers tours de la boucle while en
remplissant le tableau suivant. Attention, pour la valeur de M , on ne demande que la première
ligne.

Num. boucle pos Elt listeChiffresOk M[0]

0

1

2

3

4

5

où "Num. boucle" signifie le numéro du passage dans la boucle while. On rappelle que par
convention, le numéro 0 est l’état des variables avant l’entrée dans la boucle.

Q16 Que peut-on dire du Sudoku si l’on sort de la boucle while avec pos[0]<0 ? pos[0]>8 ? Avec les
hypothèses du problème, ne peut-on pas réduire ces conditions ?

6

Q17 Le but des dernières questions est de prouver l’algorithme solutionSudoku. Chaque tour de la
boucle while sera repéré par le couple de variables (M, pos) pris en fin de boucle. Montrer que :
— Les cases strictement inférieures à pos ne contiennent pas de 0.
— Les cases strictement supérieures à pos et non pré-remplies sont toutes nulles.
— Les cases remplies vérifient les règles du Sudoku.

Q18 Pour chaque couple (M, pos), on définit sa liste de référence Lref(M, pos) comme étant la liste
des valeurs des cases du Sudoku de la position [0,0] à la position pos y compris, à laquelle on a
ajouté en fin de liste l’entier 10. Ainsi par exemple, avec le Sudoku du début de la partie C, on a :

>>>Lref(M, [0,2])
[2,5,4,10]
>>>Lref(M, [0,3])
[2,5,4,0,10]

On dira que (M1, pos1) ≤ (M2, pos2) si et seulement si Lref(M1, pos1) ≤ Lref(M2, pos2) ; les
listes de références étant comparées à l’aide de l’ordre lexicographique. Il est clair que la relation
ainsi définie est réflexive et transitive. Montrer qu’elle est également antisymétrique sur l’ensemble
des couples (M,pos) parcourus par l’algorithme.

Q19 Montrer qu’à chaque tour de boucle le couple (M,pos) est strictement plus grand qu’à la fin du
tour précédent. En déduire que la boucle while se termine et que si en sortie, la valeur de pos[0]
est 9, le sudoku renvoyé est valide.

7

MPSI 2018-2019 Correction informatique
Concours blanc

Q1 La fonction rechercheDansListe peut s’écrire :

def rechercheDansListe(elt, L) :
for i in range(0, len(L)) :

if L[i]==elt :
return(i)

return(-1)

Q2 Dans le pire des cas, il y a n comparaisons. L’algorithme est en O(n).

Q3 Si la grille est bien remplie, la somme des éléments d’une ligne est 1+2+3+4+5+6+7+8+9 puisque
cette somme ne change pas si on trie les termes dans l’ordre croissant. De même pour les colonnes
et les carrés 3 × 3

Q4 La fonction qui teste si une ligne est bien remplie peut s’écrire :

def ligneBienRemplie(L,i):
chifTrouvé = [1]+[0]*9
chifTrouvé[i]=1 si le chiffre i est déjà apparu, 0 sinon.
for j in range(0,9) :

Chif = L[i][j]
if chifTrouvé[Chif]==1 :

return(False)
else :

chifTrouvé[Chif]=1
return(True)

Q5 La fonction qui teste si une grille est bien remplie peut alors s’écrire :

def bienRempli(L):
for i in range(0,9):

if ligneBienRemplie(L,i)==False :
return(False)

if colonneBienRemplie(L,i)==False :
return(False)

if carreBienRempli(L,i)==False :
return(False)

return(True)

8

Q6 Le code de la fonction ligne de l’énoncé, une fois complété, ressemble à ceci :

def ligne(L,i,j):
chiffre = []
for k in range(0,9):

if L[i][k]>0 and k!=j:
chiffre.append(L[i][j])

return chiffre

Q7 La fonction attendue dans l’énoncé est celle-ci :

def carre(L,i,j):
icoin = 3*(i//3)
jcoin = 3*(j//3)
chiffre = []
for x in range(icoin, icoin+3) :

for y in range(jcoin, jcoin+3) :
if (L[x][y] > 0 and (x,y)!=(i,j)):

chiffre.append(L[x][y])
return chiffre

Q8 La fonction conflit attendue dans l’énoncé peut ressembler à ceci :

def conflit(L,i,j):
return(ligne(L,i,j)+colonne(L,i,j)+carre(L,i,j))

Q9 La fonction complétée ressemble maintenant à ceci :

def chiffresOk(L,i,j):
listeOk = []
listeConf = conflit(L,i,j)
for k in range(1,10):

if rechercheDansListe(k, listeConf)==-1 :
listeOk.append(k)

return(listeOk)

Q10 Les chiffres que l’on peut écrire à la case (i, j) peuvent alors être calculés avec

def nbPossible(L,i,j):
return(len(chiffresOk(L,i,j)))

9

Q11 Les erreurs volontairement introduites concernaient l’indexation à partir de 0, le double-égal pour
les tests et l’oubli de la modification de la variable changement. La fonction "corrigée" est celle-ci :

def unTour(L):
changement = False
for i in range(9):

for j in range(9):
if (L[i][j] == 0):

if (nbPossible(L,i,j) == 1):
L[i][j] = chiffresOk(L,i,j)[0]
changement = True

return(changement)

Q12 La fonction qui applique l’algorithme "naïf" est celle-ci :

def complete(L):
pasFini = True
while pasFini :

pasFini = un_tour(L)
return(bienRempli(L))

Q13 La fonction caseSuivante balaie, ligne par ligne, le sudoku :

def caseSuivante(pos):
if pos[1]<8 :

return([pos[0],pos[1]+1])
else:

return([pos[0]+1,0])

Q14 La fonction caseLibreSuivante peut s’écrire :

def caseLibreSuivante(pos, L) :
pos2 = caseSuivante(pos)
while pos2!=[9,0] and L[pos2[0]][pos2[1]]>0 :

pos2 = caseSuivante(pos2)
return(pos2)

Q15 Voici le tableau des valeurs des variables rempli.

Num. boucle pos Elt listeChiffresOk M[0]

0 [0, 3] X X [2, 5, 4, 0, 9, 6, 3, 0, 0]

1 [0, 7] 0 [1, 7] [2, 5, 4, 1, 9, 6, 3, 0, 0]

2 [0, 8] 0 [8] [2, 5, 4, 1, 9, 6, 3, 8, 0]

3 [0, 7] 0 [] [2, 5, 4, 1, 9, 6, 3, 0, 0]

4 [0, 3] 8 [8] [2, 5, 4, 0, 9, 6, 3, 0, 0]

5 [0, 7] 1 [1, 7] [2, 5, 4, 7, 9, 6, 3, 0, 0]

10

La variable Elt permet non seulement de mémoriser la case que l’on est en train de traiter, mais
elle permet également de savoir si la position de la case précédente était plus grande ou plus petite
que celle actuelle. En effet Elt est nul si on vient d’une case antérieure et non nul dans le cas
contraire.

Q16 Si pos[0]<0 en sortie de la boucle while , le sudoku n’a pas de solution. Si pos[0]>8 , l’al-
gorithme a trouvé une solution. Dans l’énoncé, on fait l’hypothèse que le Sudoku a une unique
solution, on peut donc se contenter de while pos[0]<=8.

Q17 Montrons ces propriétés par récurrence.

Initialisation. L’instruction pos = caseLibreSuivante([-1,8],L) nous positionne sur la pre-
mière case libre du Sudoku. Les cases qui précédent ne peuvent donc pas contenir de 0, les cases
suivantes qui ne sont pas pré-remplies ne contiennent que des 0. Enfin, on a fait l’hypothèse que
le Sudoku de départ vérifiait les règles.

Hérédité. On remarque que dans la boucle while, soit on met la case actuelle à 0 et on va vers la
case précédente, soit on met un chiffre de la liste chiffresOk et on va vers la case suivante. Ces 2
actions conservent les 4 propriétés de l’énoncé.

Q18 Soient (M1, pos1) et (M2, pos2) ayant la même liste de référence. En particulier, ces listes sont de
même longueur, on a donc pos1 = pos2. De plus, les Sudokus jusqu’à la position pos1 = pos2 sont
identiques et après sont remplis de 0 d’après la question précédente. On a donc aussi M1 =M2.

Q19 Soit L = [. . . , a, b,10] la liste de référence à un instant donné. Il y a plusieurs possibilités :

● len(listeChiffresOk)==0. Dans ce cas L devient L = [. . . , a,10] qui est supérieur.

● Elt==0. Alors la liste L vaut L = [. . . , a,0,10] et devient de la forme L = [. . . , a, c,0,10],
avec c ∈ {1, . . . ,9} qui est supérieur.

● Elt==0 et i==len(listeChiffresOk)-1. Comme dans le cas 1, la liste L devient L =

[. . . , a,10] qui est toujours supérieur.

● Elt==0 et i!=len(listeChiffresOk)-1. Enfin la liste devient L = [. . . , a, c,10] avec c > b
qui est donc supérieur.

Dans tous les cas la liste de référence croît strictement. Comme l’ensemble des listes de référence
est fini, la boucle s’arrête. Si pos[0] vaut 9 en sortie de boucle, on utilise la propriété 1 de la
question 17 qui affirme que toutes les cases sont remplies et la propriété 4 pour la validité du
Sudoku.

11

