
Solution du C.B. d’I.P.T. 2017

Question 1

def deplacerParticule(particule, largeur, hauteur):

x, y, vx, vy = particule

if x + vx <= 0 or x + vx >= largeur: vx = -vx

if y + vy <= 0 or y + vy >= hauteur: vy = -vy

return x + vx, y + vy, vx, vy

Question 2

SELECT NumeroParticule FROM Position WHERE temps=0 AND (x<1 OR y<1)

Question 3. On doit faire une jointure entre les deux tables, suivant les deux attributs
NumeroParticule et temps. Ici la valeur du temps est prise à 0.

SELECT P.NumeroParticule, x,y,vx,vy FROM Position P, Vitesse V

WHERE P.NumeroParticule=V.NumeroParticule AND P.temps=V.temps AND V.temps=0

ou si l’on préfère avec la syntaxe JOIN :

SELECT P.NumeroParticule, x,y,vx,vy FROM Position P JOIN Vitesse V

ON P.NumeroParticule=V.NumeroParticule AND P.temps=V.temps WHERE V.temps=0

Question 4. La requête suivant renvoie un nombre, qui est le max cherché.

SELECT MAX(SQRT(vx*vx+vy*vy)) FROM Vitesse WHERE temps=0

Question 5. Il faut faire attention qu’il peut y avoir plusieurs particules ayant la vitesse
maximale au même temps.

SELECT NumeroParticule FROM Vitesse

WHERE vx*vx+vy*vy= (SELECT MAX(vx*vx+vy*vy) FROM Vitesse WHERE temps=0)

Question 6. Il s’agit ici de faire une auto-jointure sur la table Vitesse car on doit
comparer les entrées entre le temps t et le temps t + 1.

SELECT V1.NumeroParticule, V1.temps AS DateRebond FROM Vitesse V1 JOIN Vitesse V2

ON V1.NumeroParticule=V2.NumeroParticule AND V2.temps=V1.temps+1

WHERE V1.vx*V2.vx<0 OR V1.vy*V2.vy<0 -- condition de rebond

Question 7. On doit faire attention au problème de la copie des listes. Il ne s’agit pas de
copier à chaque fois la même ligne, sous peine qu’une modification d’une ligne ne modifie
toutes les lignes. On peut utiliser une double boucle, comme suit :

1

def nouvelleGrille(largeur, hauteur):

grille = []

for i in range(largeur):

ligne = []

for j in range(hauteur):

ligne.append(None)

grille.append(ligne)

return grille

Question 8. La fonction suivante commence par initialiser une nouvelle grille, qu’elle
remplit ensuite en faisant agir deplacerParticule sur chacune des entrées de grille qui
ne sont pas None tant qu’elle ne détecte pas des collisions, lesquelles se produisent si la
case de nouvelle_grille qu’on veut affecter a déjà été modifiée.

def majGrilleOuCollision(grille):

largeur, hauteur = len(grille), len(grille[0])

nouvelle_grille = nouvelleGrille(largeur, hauteur)

for i in range(largeur):

for j in range(hauteur):

if grille[i][j] != None: # S’il y a une particule en (i,j)

particule_deplacee = deplacerParticule(grille[i][j],largeur,hauteur)

x, y, vx, vy = particule_deplacee

if nouvelle_grille[int(x)][int(y)]!= None :

return None # cas de collision

nouvelle_grille[int(x)][int(y)] = particule_deplacee

return nouvelle_grille

Question 9

def attendreCollisionGrille(grille, tMax):

t = 0

while t < tMax and grille != None:

t += 1

grille = majGrilleOuCollision(grille)

if t != tMax: return t # collision au temps t

Noter que si on n’est pas dans le cas t!=tMax, la fonction ne retourne rien, ce qui est la
même chose en Python qu’un return None.

Question 10 Considérons la complexité de chaque fonction intervenant ici :
● La fonction deplacerParticule a une complexité en O(1) : le nombre d’opérations est
le même quelles que soient les valeurs de largeur, hauteur.
● La fonction nouvelleGrille a une complexité en O(largeur × hauteur) : elle effectue
en fait exactement largeur × hauteur fois la fonction append.
● La fonction majGrilleOuCollision fait :

— un appel à nouvelleGrille de complexité O(largeur × hauteur),
— puis encore une double boucle à l’intérieur de laquelle les opérations effectuées sont

de complexité constante, donc encore en O(largeur × hauteur).

2

Ainsi la complexité totale de majGrilleOuCollision est O(largeur × hauteur).
● La fonction attendreCollisionGrille effectue au plus tMax tours de boucle while, il
y a donc au plus tMax appels à majGrilleOuCollision. Donc la complexité temporelle
de attendreCollisionGrille est O(largeur × hauteur × tMax).

Question 11 Il s’agit bien de considérer la distance euclidienne entre les particules
∣∣p1 − p2∣∣ =

√

(x1 − x2)2 + (y1 − y2)2 et pas max(∣x1 − x2∣, ∣y1 − y2∣) !

def detecterCollisionEntreParticules(p1, p2):

x1, y1 = p1[0],p1[1]

x2, y2= p2[0],p2[1]

return (x1 - x2)**2 + (y1 - y2)**2 <= 4 * rayon**2

Question 12 Il faut bien penser à ≪ extraire ≫ de particules, passée en paramètre, ses
différentes entrées, pour pouvoir travailler avec. Ensuite c’est un simple parcours de liste.

def maj(particules):

largeur, hauteur, listeParticules = particules

nouvelle_liste = []

for particule in listeParticules:

nouvelle_liste.append(deplacerParticule(particule, largeur, hauteur))

return largeur, hauteur, nouvelle_liste

Question 13. Il faut faire attention qu’on veut detecter les collisions au temps t +
1. Donc il faut commencer par faire agir maj sur particules, en créant ainsi une liste
nouvelles_particules, sur laquelle on peut chercher à détecter les collisions. Il faut

aussi prendre garde de démarrer la boucle intérieure à i+1 pour ne pas détecter une
collision entre une particule et elle-même.

def majOuCollision(particules):

nouvelles_particules = maj(particules)

listeParticules = nouvelles_particules[2]

n = len(listeParticules)

for i in range(n-1):

for j in range(i+1, n): # on prend des particules différentes

if detecterCollisionEntreParticules(listeParticules[i], listeParticules[j]):

return None

return nouvelles_particules

Question 14. Du point de vue de la complexité :
● On a déjà dit que deplacerParticule a une complexité en O(1),
● detecterCollisionEntreParticule a aussi une complexité en O(1) : ne dépend pas
de largeur et hauteur.
● maj a une complexité en O(n) car on parcourt listeParticules de longueur n et à
chaque étape on applique des opérations en O(1).
● majOuCollision fait

— un appel à maj en O(n),
— au plus (exactement si pas de collision) n(n−1)/2 appels à detecterCollisionEntreParticules,

ce qui donne une complexité en O(n2
).

Donc la complexité de majOuCollision est O(n2
).

3

Question 15. La distance maximale entre les deux (centre des) particules lors d’une
collision est 2×rayon. La distance maximale qu’elle peuvent parcourir pour se rapprocher
l’une de l’autre en un temps de 1 et 2vmax × 1.

Elles devront donc se situer à une distance l’une de l’autre d’au plus 2(rayon + vmax)
à l’instant t pour avoir une chance d’entrer en collision à l’instant t + 1.

Question 16. On commence toujours par la fabrication de la liste nouvelles_particules
car on cherche à détecter les collisions au temps t+ 1. Pour chaque particule d’indice i de
la nouvelle liste, on applique detecterCollision avec les particules d’indice j > i mais
on s’arrête dès que la distance entre l’abscisse de la particule j et celle de la particule i
est supérieure à dmax puisque les particules suivantes seront encore plus loin en abscisse.

def majOuCollisionX(particules):

nouvelles_particules = maj(particules)

listeParticules = particules[2]

nvlListeParticules = nouvelles_particules[2]

n = len(listeParticules)

dmax = 2*(rayon + vMax) # distance max au temps t pour risque de collision

for i in range(n-1):

xi = listeParticules[i][0] # abscisse de la particule i

j = i + 1

xj = listeParticules[j][0] # abscisse de la particule j

while j < n and xj - xi <= dmax: # test d’arrêt qui utilise le

caractère ordonné suivant les abscisses.

if detecterCollisionEntreParticules(nvllisteParticules[i], nvlListeParticules[j]):

return None # cas de collision

j += 1

xj = listeParticules[j][0]

return nouvelles_particules

4

