'Solution du C.B. d’I.P.T. 2017

Question 1

def deplacerParticule(particule, largeur, hauteur):
X, y, VX, vy = particule
if x + vx <= 0 or x + vx >= largeur: vx = -VX
if y + vy <= 0 or y + vy >= hauteur: vy = -vy
return x + vx, y + vy, VX, Vy

Question 2

SELECT NumeroParticule FROM Position WHERE temps=0 AND (x<1 OR y<1)

Question 3. On doit faire une jointure entre les deux tables, suivant les deux attributs
NumeroParticule et temps. Ici la valeur du temps est prise a 0.

SELECT P.NumeroParticule, x,y,vx,vy FROM Position P, Vitesse V
WHERE P.NumeroParticule=V.NumeroParticule AND P.temps=V.temps AND V.temps=0

ou si I'on préfére avec la syntaxe JOIN :

SELECT P.NumeroParticule, x,y,vx,vy FROM Position P JOIN Vitesse V
ON P.NumeroParticule=V.NumeroParticule AND P.temps=V.temps WHERE V.temps=0

Question 4. La requéte suivant renvoie un nombre, qui est le max cherché.

SELECT MAX(SQRT (vx*vx+vy*vy)) FROM Vitesse WHERE temps=0

Question 5. Il faut faire attention qu’il peut y avoir plusieurs particules ayant la vitesse
maximale au méme temps.

SELECT NumeroParticule FROM Vitesse
WHERE vx*vx+vy*vy= (SELECT MAX(vx*vx+vy*vy) FROM Vitesse WHERE temps=0)

Question 6. Il s’agit ici de faire une auto-jointure sur la table Vitesse car on doit
comparer les entrées entre le temps t et le temps ¢ + 1.

SELECT V1.NumeroParticule, V1.temps AS DateRebond FROM Vitesse V1 JOIN Vitesse V2
ON V1.NumeroParticule=V2.NumeroParticule AND V2.temps=V1.temps+1
WHERE V1.vx*V2.vx<0 OR V1.vy*V2.vy<0 -- condition de rebond

Question 7. On doit faire attention au probleme de la copie des listes. Il ne s’agit pas de
copier a chaque fois la méme ligne, sous peine qu’une modification d’une ligne ne modifie
toutes les lignes. On peut utiliser une double boucle, comme suit :

def nouvelleGrille(largeur, hauteur):

grille = []
for i in range(largeur):
ligne = []

for j in range(hauteur):
ligne.append(None)
grille.append(ligne)
return grille

Question 8. La fonction suivante commence par initialiser une nouvelle grille, qu’elle
remplit ensuite en faisant agir deplacerParticule sur chacune des entrées de grille qui
ne sont pas None tant qu’elle ne détecte pas des collisions, lesquelles se produisent si la
case de nouvelle_grille qu’on veut affecter a déja été modifiée.

def majGrilleOuCollision(grille):

largeur, hauteur = len(grille), len(grille[0])
nouvelle_grille = nouvelleGrille(largeur, hauteur)

for i in range(largeur):
for j in range(hauteur):

if grille[i] [j] !'= Nome: # S’il y a une particule en (i,])

particule_deplacee

= deplacerParticule(grillel[i] [j],largeur,hauteur)

X, y, VX, vy = particule_deplacee
if nouvelle_grille[int(x)] [int(y)]!= None

return None

cas de collision

nouvelle_grille[int(x)] [int(y)] = particule_deplacee

return nouvelle_grille

Question 9

def attendreCollisionGrille(grille, tMax):

t=0
while t < tMax and grille != None:
t +=1

grille = majGrilleQuCollision(grille)
if t !'= tMax: return t # collision au temps t

Noter que si on n’est pas dans le cas t!=tMax, la fonction ne retourne rien, ce qui est la
meéme chose en Python qu’un return None.

Question 10 Considérons la complexité de chaque fonction intervenant ici :
e La fonction deplacerParticule a une complexité en O(1) : le nombre d’opérations est
le méme quelles que soient les valeurs de largeur, hauteur.
e La fonction nouvelleGrille a une complexité en O(largeur x hauteur) : elle effectue
en fait exactement largeur x hauteur fois la fonction append.
e La fonction majGrilleQuCollision fait :

— un appel & nouvelleGrille de complexité O(largeur x hauteur),

— puis encore une double boucle a l'intérieur de laquelle les opérations effectuées sont

de complexité constante, donc encore en O(largeur x hauteur).

Ainsi la complexité totale de majGrilleOuCollision est O(largeur x hauteur).

e La fonction attendreCollisionGrille effectue au plus tMax tours de boucle while, il
y a donc au plus tMax appels a majGrilleOuCollision. Donc la complexité temporelle
de attendreCollisionGrille est O(largeur x hauteur x tMax).

Question 11 1l s’agit bien de considérer la distance euclidienne entre les particules
[p1 = p2ll = /(21 —22) + (y1 - y2)? et pas max(|z1 - za|, |y1 —) !
def detecterCollisionEntreParticules(pl, p2):

x1, y1 = p1[0],p1[1]

x2, y2= p2[0],p2[1]

return (x1 - x2)**2 + (yl - y2)**2 <= 4 * rayonx*2

Question 12 Il faut bien penser a « extraire » de particules, passée en parametre, ses
différentes entrées, pour pouvoir travailler avec. Ensuite c¢’est un simple parcours de liste.

def maj(particules):
largeur, hauteur, listeParticules = particules
nouvelle_liste = []
for particule in listeParticules:
nouvelle_liste.append(deplacerParticule(particule, largeur, hauteur))
return largeur, hauteur, nouvelle_liste

Question 13. 1l faut faire attention qu’on veut detecter les collisions au temps t +
1. Donc il faut commencer par faire agir maj sur particules, en créant ainsi une liste
nouvelles_particules, sur laquelle on peut chercher a détecter les collisions. Il faut
aussi prendre garde de démarrer la boucle intérieure a i+1 pour ne pas détecter une
collision entre une particule et elle-méme.

def majOuCollision(particules):
nouvelles_particules = maj(particules)
listeParticules = nouvelles_particules[2]
n = len(listeParticules)
for i in range(n-1):
for j in range(i+l, n): # on prend des particules différentes
if detecterCollisionEntreParticules(listeParticules[i], listeParticules[j]):
return None
return nouvelles_particules

Question 14. Du point de vue de la complexité :
e On a déja dit que deplacerParticule a une complexité en O(1),
e detecterCollisionEntreParticule a aussi une complexité en O(1) : ne dépend pas
de largeur et hauteur.
e maj a une complexité en O(n) car on parcourt listeParticules de longueur n et a
chaque étape on applique des opérations en O(1).
e majOuCollision fait
— un appel a maj en O(n),
— au plus (exactement si pas de collision) n(n—1)/2 appels a detecterCollisionEntreParticules,
ce qui donne une complexité en O(n?).
Donc la complexité de majOuCollision est O(n?).

Question 15. La distance maximale entre les deux (centre des) particules lors d’une
collision est 2 x rayon. La distance maximale qu’elle peuvent parcourir pour se rapprocher
I'une de 'autre en un temps de 1 et 2vmax x 1.

Elles devront donc se situer a une distance 1'une de 'autre d’au plus 2(rayon + vmax)
a l’instant ¢ pour avoir une chance d’entrer en collision a l'instant ¢ + 1.

Question 16. On commence toujours par la fabrication de la liste nouvelles_particules
car on cherche a détecter les collisions au temps ¢ + 1. Pour chaque particule d’indice i de
la nouvelle liste, on applique detecterCollision avec les particules d’indice j > i mais
on s’arréte deés que la distance entre l’abscisse de la particule j et celle de la particule
est supérieure o dmax puisque les particules suivantes seront encore plus loin en abscisse.

def majOuCollisionX(particules):
nouvelles_particules = maj(particules)
listeParticules = particules[2]
nvlListeParticules = nouvelles_particules[2]
n = len(listeParticules)
dmax = 2x(rayon + vMax) # distance max au temps t pour risque de collision

for i in range(n-1):
xi = listeParticules[i] [0] # abscisse de la particule i
j=i+ 1
xj = listeParticules[j][0] # abscisse de la particule j

while j < n and xj - xi <= dmax: # test d’arrét qui utilise le
caractére ordonné suivant les abscisses.
if detecterCollisionEntreParticules(nvllisteParticules[i], nvlListeParticules[j]):
return None # cas de collision
j+=1
xj = listeParticules[j] [0]
return nouvelles_particules

