
Complément au sujet du C.B. d’I.P.T 2016/2017

(Suite et fin du sujet de l’X PSI 2016. Le sujet du C.B. était issu de ce sujet à l’exception
des questions de S.Q.L. et de quelques modifications ou indications mineures). La dernière partie
ci-dessous fait référence à la notion de pile qui sera introduite dans le cours de deuxième année
d’I.P.T. Néanmoins le paragraphe introductif ci-dessous peut suffire pour comprendre ici.

Partie V. Trier des listes partiellement triées

On souhaite maintenant proposer un algorithme de tri, qui est d’autant plus efficace que la liste
donnée en entrée est déjà partiellement triée. On ne donnera pas de définition formelle de ce que
ce terme signifie. Dans toute cette partie, pour simplifier, on ne triera que des listes d’entiers
(int).

Le tri choisi est une version simplifiée du tri utilisé par Python (qui s’appelle TimSort). On nom-
mera α-tri cette version simplifiée. Ce tri est basé sur un découpage de la liste à trier en séquences
croissantes maximales d’éléments consécutifs (appelées scm). Ces séquences sont croissantes au
sens large. Il consiste à effectuer une succession de fusions de scm consécutives jusqu’à n’avoir plus
qu’une seule scm. Fusionner deux scm consécutives consiste à réordonner leurs éléments pour ne
former qu’une seule scm, comme dans le tri fusion. On notera ∣x∣ la longueur d’une scm x.

On rappelle qu’une pile est une liste pile qui, outre son initialisation, possède deux opérations :
l’ajout en fin de liste d’un élément x en utilisant pile.append(x), et la suppression du dernier
élément en utilisant pile.pop(). Cette dernière opération modifie la pile et renvoie l’élément
supprimé, ou produit une erreur si pile est la liste vide.

L’algorithme α-tri se déroule en deux temps. On commence par partitionner la liste en scm
consécutives, en identifiant leurs indices de début et de fin dans la liste. Dans un second temps, on
effectue les fusions.

Partitionnement en scm
Si s est une liste d’entiers de longueur n ≥ 1, son partitionnement en scm est l’unique séquence

de longueur k ≥ 1 de couples d’entiers (d0, f0), (d1, f1), . . . (dk−1, fk−1) telle que :
— d0 = 0 et fk−1 = n − 1,
— di ≤ fi, pour tout i ∈ {0, . . . , k − 1},
— di+1 = fi+1 pour tout i ∈ {0, . . . , k − 2},
— pour tout i ∈ 0, . . . , k − 1, la suite s[di], s[di+1], . . . ,s[fi] est croissante au sens large,
— s[fi] > s[di+1] pour tout i ∈ {0, . . . , k − 2}.

Exemple : si l’on considère la séquence s= [3,4,8,11,1,5,2,7,9,0,10,0], on obtient k = 4 et la
décomposition :

3 ≤ 4 ≤ 8 ≤ 11
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(d0,f0)=(0,3)

> 1 ≤ 5
±

(d1,f1)=(4,5)

> 2 ≤ 7 ≤ 9
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(d2,f2)=(6,8)

> 0 ≤ 10
²

(d3,f3)=(9,10)

> 0
®

(d4,f4)=(11,11)

Question 17.
Écrire une fonction scm(s) qui prend une liste s en paramètre et renvoie la liste ordonnée des
couples d’indices correspondant au partitionnement en scm de s. Par exemple, avec comme pa-
ramètre la liste s = [3, 4, 8, 11, 1, 5, 2, 7, 9, 0, 10, 0], l’appel à scm(s) renverra la
liste [(0, 3), (4, 5), (6, 8), (9, 10), (11, 11)].

Fusions de deux scm consécutives
Les fusions effectuées par α-tri concernent toujours deux scm consécutives. Nous aurons donc

besoin d’une procédure pour réaliser une telle fusion.

Question 18.
Écrire une procédure fusionner(s, r1, r2) qui prend une liste s en paramètre ainsi que deux
scm consécutives encodées par leurs indices de début et de fin, et les fusionne en une seule scm :
si r1 = (d1, f1) et r2 = (d2, f2), alors après l’appel à la procédure, la partie de s située entre les

1



indices d1 et f2 dans s doit être triée. Cette procédure ne crée pas une nouvelle liste, elle modifie
la liste s.

Remarque : Il n’est pas demandé de vérifier que les scm sont consécutives. Si nécessaire, on
supposera que l’on dispose d’une fonction copier(s, debut, fin) qui renvoie une copie de la
liste donnée en paramètre entre les indices debut et fin, que l’on pourra utiliser pour recopier les
sous-séquences de s qui correspondent aux scm décrites par r1 et r2.

Algorithme α-tri
Les fusions des scm sont effectuées en deux temps. Tout d’abord, on utilise une pile initialement

vide, dans laquelle les scm sont ajoutées une par une, dans l’ordre. À chaque fois qu’une scm est
ajoutée, on compare les longueurs (leurs nombres d’éléments) de la dernière scm z de la pile et de
l’avant-dernière y (si elle existe). Si ∣y∣ < 2∣z∣, on retire y et z de la pile, on les fusionne et on ajoute
la scm fusionnée dans la pile. On continue à effectuer des fusions tant que la condition sur les
longueurs des deux dernières scm est vérifiée. Quand on arrive à une pile avec un seul élément, ou
telle que ∣y∣ ≥ 2∣z∣, on ajoute la scm suivante dans la pile et on recommence les fusions éventuelles.

Dans un deuxième temps, lorsque toutes les scm initiales ont été ajoutées à la pile, on effectue
une dernière passe en fusionnant itérativement les deux dernières scm de la pile, jusqu’à n’avoir
plus qu’une seule scm. Cette scm est bien la liste initiale triée.

Exemple d’exécution de la phase de fusion pour [3, 4, 8, 11, 1, 5, 2, 7, 9, 0, 10, 0] :

** Découpage en scm **

Liste à trier: [3, 4, 8, 11, 1, 5, 2, 7, 9, 0, 10, 0]

Liste des scm: [(0, 3), (4, 5), (6, 8), (9, 10), (11, 11)]

** Première phase **

État de la pile: [(0, 3)]

État de la pile: [(0, 3), (4, 5)]

État de la pile: [(0, 3), (4, 5), (6, 8)]

Fusion des scm: (4, 5) et (6, 8). État de la liste: [3, 4, 8, 11, 1, 2, 5, 7, 9, 0, 10, 0]

État de la pile: [(0, 3), (4, 8)]

Fusion des scm: (0, 3) et (4, 8). État de la liste: [1, 2, 3, 4, 5, 7, 8, 9, 11, 0, 10, 0]

État de la pile: [(0, 8)]

État de la pile: [(0, 8), (9, 10)]

État de la pile: [(0, 8), (9, 10), (11, 11)]

** Deuxième phase **

Fusion des scm: (9, 10) et (11, 11). État de la liste: [1, 2, 3, 4, 5, 7, 8, 9, 11, 0, 0, 10]

État de la pile: [(0, 8), (9, 11)]

Fusion des scm: (0, 8) et (9, 11). État de la liste: [0, 0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11]

État de la pile: [(0, 11)]

La liste triée: [0, 0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11]

Question 19.
À l’aide de la procédure fusionner demandée à la question 18 écrire une procédure depileFusionneRemplace(s,
pile) qui prend en paramètre une liste s ainsi qu’une pile de scm (sous la forme de couples d’in-
dices de début et de fin). Cette procédure devra retirer les deux scm au sommet de la pile, les
fusionner dans la liste s et replacer les indices de la scm fusionnée au sommet de la pile.

Remarque : La pile doit contenir au moins deux scm ; on suppose que c’est le cas, et il n’est
donc pas demandé de le vérifier.

On rappelle que si s est une liste, s[-1] et s[-2] sont respectivement le dernier et l’avant-
dernier élément de la liste, quand ils existent.

Question 20.
En utilisant les questions précédentes, écrire une procédure alphaTri(s) qui prend en paramètre
une liste s et trie cette liste en utilisant l’algorithme α-tri décrit ci-dessus (voir l’exemple). Atten-
tion, cette procédure ne crée pas une nouvelle liste, elle modifie la liste passée en paramètre.

L’algorithme TimSort a d’abord été conçu pour le langage Python. Quelques années après, il a
été adopté par d’autres langages de programmation. Il est notamment l’un des tris de la bibliothèque
standard du langage Java depuis la version 7.

2



∗ ∗

∗

3


