Complément au sujet du C.B. d’I.P.T 2016/2017

(Suite et fin du sujet de ’X PSI 2016. Le sujet du C.B. était issu de ce sujet a 'exception
des questions de S.Q.L. et de quelques modifications ou indications mineures). La derniére partie
ci-dessous fait référence a la notion de pile qui sera introduite dans le cours de deuxiéme année
d’L.P.T. Néanmoins le paragraphe introductif ci-dessous peut suffire pour comprendre ici.

Partie V. Trier des listes partiellement triées

On souhaite maintenant proposer un algorithme de tri, qui est d’autant plus efficace que la liste
donnée en entrée est déja partiellement triée. On ne donnera pas de définition formelle de ce que
ce terme signifie. Dans toute cette partie, pour simplifier, on ne triera que des listes d’entiers
(int).

Le tri choisi est une version simplifiée du tri utilisé par Python (qui s’appelle TimSort). On nom-
mera a-tri cette version simplifiée. Ce tri est basé sur un découpage de la liste a trier en séquences
croissantes maximales d’éléments consécutifs (appelées scm). Ces séquences sont croissantes au
sens large. Il consiste & effectuer une succession de fusions de scm consécutives jusqu’a n’avoir plus
qu’'une seule scm. Fusionner deux scm consécutives consiste a réordonner leurs éléments pour ne
former qu’une seule scm, comme dans le tri fusion. On notera |z| la longueur d’une scm x.

On rappelle qu'une pile est une liste pile qui, outre son initialisation, possede deux opérations :
I’ajout en fin de liste d’un élément x en utilisant pile.append(x), et la suppression du dernier
élément en utilisant pile.pop(). Cette derniere opération modifie la pile et renvoie ’élément
supprimé, ou produit une erreur si pile est la liste vide.

L’algorithme a-tri se déroule en deux temps. On commence par partitionner la liste en scm
consécutives, en identifiant leurs indices de début et de fin dans la liste. Dans un second temps, on
effectue les fusions.

Partitionnement en sem

Si s est une liste d’entiers de longueur n > 1, son partitionnement en scm est 'unique séquence
de longueur k > 1 de couples d’entiers (do, fo), (d1, f1), ... (dk-1, fr-1) telle que :

— dO:Oet fk,lz’l’b—l,

— d; < f;, pour tout 7€ {0,...,k—-1},

- di+1 = fi+1 pour tout 1€ {O, ey k- 2},

— pour tout i €0,...,k -1, la suite s[d;], s[di+1],--.,s[fi] est croissante au sens large,

— s[fi] > s[di+1] pour tout i € {0, ..., k—2}.

Exemple : si l'on consideére la séquence s=[3,4,8,11,1,5,2,7,9,0,10,0], on obtient k =4 et la
décomposition :

3<4<8<11> 1<5 > 2<7<9 > 0<10 > 0
| —

—— N——— ~—— =~

(do,f0)=(0,3) (d1,f1)=(4,5) (da,f2)=(6,8) (d3,f3)=(9,10) (da,fa)=(11,11)

Question 17.
Ecrire une fonction scm(s) qui prend une liste s en parametre et renvoie la liste ordonnée des
couples d’indices correspondant au partitionnement en scm de s. Par exemple, avec comme pa-
rametre la liste s = [3, 4, 8, 11, 1, 5, 2, 7, 9, 0, 10, 0], 'appel a scm(s) renverra la
liste [0, 3), (4, 5), (6, 8, (9, 10), (11, 11)].

Fusions de deux scm consécutives

Les fusions effectuées par a-tri concernent toujours deux scm consécutives. Nous aurons donc
besoin d’une procédure pour réaliser une telle fusion.

Question 18.
Ecrire une procédure fusionner(s, rl, r2) qui prend une liste s en parametre ainsi que deux
sem conséeutives encodées par leurs indices de début et de fin, et les fusionne en une seule secm :
si vl = (dy, f1) et 2 = (da, f2), alors apres Uappel a la procédure, la partie de s située entre les

indices d; et fo dans s doit étre triée. Cette procédure ne crée pas une nouvelle liste, elle modifie
la liste s.

Remarque : Il n’est pas demandé de vérifier que les scm sont consécutives. Si nécessaire, on
supposera que ’on dispose d’'une fonction copier(s, debut, fin) qui renvoie une copie de la
liste donnée en parametre entre les indices debut et fin, que ’on pourra utiliser pour recopier les
sous-séquences de s qui correspondent aux scm décrites par rl et r2.

Algorithme a-tri

Les fusions des scm sont effectuées en deux temps. Tout d’abord, on utilise une pile initialement
vide, dans laquelle les scm sont ajoutées une par une, dans I'ordre. A chaque fois qu’'une scm est
ajoutée, on compare les longueurs (leurs nombres d’éléments) de la derniere scm z de la pile et de
Pavant-derniere y (si elle existe). Si |y| < 2|z|, on retire y et z de la pile, on les fusionne et on ajoute
la scm fusionnée dans la pile. On continue & effectuer des fusions tant que la condition sur les
longueurs des deux dernieres scm est vérifiée. Quand on arrive & une pile avec un seul élément, ou
telle que |y| > 2|z|, on ajoute la sem suivante dans la pile et on recommence les fusions éventuelles.

Dans un deuxieme temps, lorsque toutes les scm initiales ont été ajoutées a la pile, on effectue
une derniere passe en fusionnant itérativement les deux dernieres scm de la pile, jusqu’a n’avoir
plus qu'une seule scm. Cette scm est bien la liste initiale triée.

Exemple d’exécution de la phase de fusion pour [3, 4, 8, 11, 1, 5, 2, 7, 9, 0, 10, 0]:

** Découpage en scm *x*

Liste a trier: [3, 4, 8, 11, 1, 5, 2, 7, 9, 0, 10, 0]

Liste des scm: [(0, 3), (4, 5), (6, 8), (9, 10), (11, 11)]

** Premiére phase *x*

Etat de la pile: [(0, 3)]

Etat de la pile: [(0, 3), (4, 5)]

Etat de la pile: [(0, 3), (4, 5), (6, 8)]

Fusion des scm: (4, 5) et (6, 8). Etat de la liste: [3, 4, 8, 11, 1, 2, 5, 7, 9, 0, 10, 0]

Etat de la pile: [(0, 3), (4, 8)]

Fusion des scm: (0, 3) et (4, 8). Etat de la liste: [1, 2, 3, 4, 5, 7, 8, 9, 11, 0, 10, 0]

Etat de la pile: [(0, 8)]

Etat de la pile: [(0, 8), (9, 10)]

Etat de la pile: [(0, 8), (9, 10), (11, 11)]

** Deuxiéme phase *x

Fusion des scm: (9, 10) et (11, 11). Etat de la liste: [1, 2, 3, 4, 5, 7, 8, 9, 11, 0, 0, 10]

Etat de la pile: [(0, 8), (9, 11)]

Fusion des scm: (0, 8) et (9, 11). Etat de la liste: [0, O, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11]

Etat de la pile: [(0, 11)]

La liste triée: [0, 0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11]

Question 19.
A laide de la procédure fusionner demandée la question 18 écrire une procédure depileFusionneRemplace(s,
pile) qui prend en parametre une liste s ainsi qu’une pile de sem (sous la forme de couples d’in-
dices de début et de fin). Cette procédure devra retirer les deux sem au sommet de la pile, les
fusionner dans la liste s et replacer les indices de la scm fusionnée au sommet de la pile.
Remarque : La pile doit contenir au moins deux scm ; on suppose que c’est le cas, et il n’est
donc pas demandé de le vérifier.

On rappelle que si s est une liste, s[-1] et s[-2] sont respectivement le dernier et 'avant-
dernier élément de la liste, quand ils existent.

Question 20.
En utilisant les questions précédentes, écrire une procédure alphaTri(s) qui prend en parametre
une liste s et trie cette liste en utilisant Palgorithme a-tri décrit ci-dessus (voir 'exemple). Atten-
tion, cette procédure ne crée pas une nouvelle liste, elle modifie la liste passée en parametre.

L’algorithme TimSort a d’abord été congu pour le langage Python. Quelques années apreés, il a
été adopté par d’autres langages de programmation. Il est notamment [’un des tris de la bibliotheque
standard du langage Java depuis la version 7.

