
TP S3 : autour de la méthode de Newton
dérivation numérique et formelle, méthodes de
Newton et de la sécante

1 Avant la méthode de Newton : comment dériver ?

1.1 Taux de variations bêtes et calculs numériques étranges

a) Ecrire en Python et en SciLab une fonction qu’on appellera derive qui prend en argument
une fonction f un point x0 et un nombre h et qui renvoie le taux de variation (f(x0 + h) −
f(x0))/h.

b) On pense bien sûr que pour avoir une bonne valeur approchée de f ′(x0), il vaut mieux
prendre h petit. Essayons d’appliquer la fonction dérive du a) à la fonction f ∶ x↦ x2, pour
x0 = 7. Le nombre dérivé exact vaut f ′(x0) = 14. Appliquer votre fonction avec h = 10−i pour
i variant de 1 à 16.

c) Que pensez des résultats obtenus ? Le plus facile à expliquer est peut-être le résultat pour
h = 10−16. Pour quelle valeur de h le résultat est-il optimal ?

1.2 Taux de variations symétriques

a) Maths : justifier que pour une fonction de classe C3, on a :

f(x0 + h) − f(x0 − h)
2h

=
h→0

f ′(x0) +O(h2),

alors qu’on a seulement :

f(x0 + h) − f(x0)
h

=
h→0

f ′(x0) +O(h).

On appelle ici taux de variations symétriques les expressions
f(x0 + h) − f(x0 − h)

2h
. Les for-

mules précédentes permettent d’espérer que les taux de variations symétriques donnent une
meilleure approximation du nombre dérivé.

b) Info. : Ecrire une fonction derive2 qui prend les mêmes arguments que derive et renvoie
le taux de variation symétrique.

c) Faire le même test avec derive2 qu’avec dérive.�� ��On étudiera plus précisément les raisons des phénomènes observés aux questions c) en cours.

1.3 Excursions pour les fonctions polynomiales : gestion formelle de la
dérivation des polynômes en SciLab

L’essentiel : la donnée d’une fonction polynomiale f ∶ R→ R, x↦∑n

k=0
akx

k est équivalente
à la donnée de la suite de ses coefficients, i.e. un tableau [a0, . . . , an].

1.3.1 Déclaration d’un polynôme formel en SciLab

On peut déclarer le polynôme formel p associé à la suite [a0, . . . , an] avec la commande poly
avec la syntaxe :

-->p=poly([2,3,1],’x’,’c’)

Explication : Le ’x’ désigne le nom de l’indéterminée, le ’c’ est pour coefficients. En effet,
on peut aussi définir un polynôme à partir de la valeur de ses racines ’r’ (argument par défaut).

1

-->q=poly([2,3],’x’) // fabrique le polynôme unitaire dont les racines sont 2 et 3
// autrement dit (x-2)(x-3)

1.3.2 Opérations sur les polynômes formels

On peut les dériver avec la commande derivat. Comme ce ne sont pas des fonctions, il faut
une commande spéciale pour les évaluer : la commande horner (qui effectue bien sûr l’algorithme
de Horner cf. chap. S1).

1.3.3 Généralisation aux quotients de polynômes

Tout ce qui précède s’applique encore aux quotients x↦ f(x) = p(x)/q(x) avec p et q polynômes.
Si p et q sont des polynômes formels, SciLab peut gérer le quotient p/q comme un objet formel,
qu’il sait dériver, évaluer.�

�
�

Conséquence : Si on veut appliquer la méthode de Newton à une fonction polynomiale
ou rationnelle mieux vaudra utiliser ces commandes pour la dérivation, pour manipuler une
valeur exacte de la fonction dérivée.

1.4 Si on veut calculer des dérivées de manière formelle pour les fonc-
tions usuelles�

�

�

�

On passe dans le monde du calcul formel :
● SciLab ne fait pas de calcul formel (à part ce qu’on vient de dire pour les polynômes
formels), pas plus que Matlab,
● il existe des logiciels de calculs formels comme Maple, Mathematica, mais aussi en
Python, le module sympy pour SYMbolic computation with Python

Exemple :

>>> from sympy import * # oui je sais c’est dangereux de tout importer comme ça.
mais ici le import sympy as sp demanderait trop de préfixes après...
>>> x=symbols(’x’)
>>> diff(sin(x),x)
cos(x)

Vous pouvez ainsi jouer à vérifier que sympy calcule des dérivées formelles des fonctions usuelles,
comme vos calculatrices sans doute.... mais le numérique revient quand même dans le processus de
l’évaluation.

2 La méthode de Newton

2.1 On fournit la fonction et sa dérivée

a) Ecrire une fonction Python et la même fonction en SciLab qu’on appellera newton1
● qui prend quatre arguments : une fonction f, sa dérivée fp que l’utilisateur a l’amabilité

d’avoir défini pour la machine, un nombre x0 et un nombre epsilon,
● applique la méthode de Newton à la fonction f en partant de x0,
● qui s’arrête quand l’écart entre deux termes successifs ∣xn+1−xn∣ est plus petit que epsilon.
● et qui renvoie la dernière valeur de la suite calculée (xn+1 avec les notations du point

précédent) ainsi que le nombre d’itérations de la méthode i.e. n + 1.
Question : avec ce test d’arrêt, a-t-on une estimation a priori de la différence entre la valeur
approchée (xn+1) et la racine r qu’on cherche ?

2

b) i) Appliquer votre fonction newton1 à la fonction sin : en Python, on utilisera le module
math.
Tester newton1(sin,cos,x0,epsilon) pour x0 de 0.1 à 2 avec un pas de 0.1 et
epsilon=10^(-7).

ii) En déduire une valeur approximative de la borne supérieure bassin d’attraction de 0 à
droite de 0. On notera b cette borne supérieure.

iii) Que se passe-t-il pour x0 à droite de b : la suite converge-t-elle forcément vers le zéro
qui est à droite i.e. π ?

c) A propos du test d’arrêt
i) Maths : Justifier que si le zéro r recherché pour f vérifie f ′(r) ≠ 0 et si f est de classe
C2 (hyp. du cours) alors :

xn+1 − xn ∼
n→+∞

xn − r.

Ainsi la condition d’arrêt ∣xn+1 − xn∣ < ε ≪ n’est pas loin ≫ de donner ∣xn − r∣ < ε.
N.B. Cependant, comme vu dans l’exemple du cours pour les fonctions convexes (où la
suite (xn) est décroissante), il n’y a pas de raison que r soit inclus dans [xn+1, xn].

ii) Maths : Toujours dans l’hypothèse où f ′(r) ≠ 0, justifier qu’il existe une constante
k ≠ 0 telle que f(xn) ∼

n→+∞
k(xn − r) et donc qu’on peut aussi utiliser comme test

d’arrêt la condition ∣f(xn)∣ < ε.
iii) Info : Réécrire le code (plus simple) d’une fonction newton2 qui utilise le test d’arrêt

du (ii)
d) On peut comparer notre fonction à celle implémentée dans scipy ou plus précisément dans

le sous-module scipy.optimize : cette fonction s’obtient via scipy.optimize.newton.

i) Lire la documentation de cette fonction de scipy.
ii) En déduire comment appliquer la méthode de Newton à f=sin avec cette fonction, en

rentrant la précision voulue.

N.B. En SciLab comme en scipy.optimize, la commande fsolve n’utilise pas exactement
Newton comme indiqué par le help fsolve qui parle de méthode hybride de type Powell.

2.2 Version pour les polynômes en SciLab

a) Avec les informations données au § 1.3 écrire une fonction newtonpoly qui prend en argument
un polynôme de SciLab, un x0 et un epsilon et lui applique la méthode de Newton. On
utilisera la commande horner pour l’évaluation.

b) Tester cette méthode sur f ∶ x ↦ (x − a)(x − b) pour a et b de votre choix. Oui je sais, on
connâıt les racines ! Mais dans ce cas, quels sont les bassins d’attraction de a et de b ? Il y
a-t-il des valeurs de x0 qui posent problèmes ici ? Chercher numériquement la réponse à ces
questions.

c) Tester cette méthode sur f ∶ x↦ x3 − x dont, là encore, on connâıt bien les racines. Essayez
pour les valeurs de x0 suivantes :

i) x0 = −0,5 : commentez le résultat ?

ii) Expliquer par une étude théorique les problèmes posées par les valeurs x0 = ± 1√
3

et

x0 = ±
1√
5

. Pour voir le problème posé par cette valeur de x0 on fera afficher les valeurs

successives de la suite (xn).

iii) Tester expérimentalement le comportement de la méthode pour les x0 tels que ∣x0∣ <
1√
3

,

∣x0∣ >
1√
5

(pour gagner du temps, on pourra ne considérer que les x0 > 0.)

iv) Tester enfin ce qui se passe pour x0 ∈ [1√
3
,

1√
5
] (ou son symétrique dans les négatifs).

3

d) Etudions maintenant d’un point de vue différent la méthode de Newton appliquée à un
polynôme fα ∶ x ↦ x3 + αx + 1 en appliquant toujours la méthode à partir de x0 = 0. On va
procéder comme on l’a fait au T.P. S1 pour l’étude de l’itération de f ∶ x↦ x2 + c.

i) Pour chaque valeur de α dans [−2,−1] avec un certain pas, on calcule les itérés de la
méthode de Newton pour fα à partir de x0 = 0, qu’on note (xn). On affiche les points
(xn, α) pour n ∈ ⟦20,120⟧.
(Autrement dit, sur chaque droite horizontale d’ordonnée α, on place les points d’abs-
cisses xn).

ii) Le polynôme fα possède une unique racine si α > α0 = −(3/2) 3
√

2 = −1.889 . . . et trois
racines si α < α0.
Ceci peut aider à interpréter certaines zones de la figure obtenue au (i)

2.3 Version utilisant la dérivation formelle vs dérivée numérique

a) Modifier votre programme Python du 2.1. pour que l’utilisateur n’ait pas à entrer la dérivée,
mais que celle-ci soit calculée formellement par sympy.

b) Modifier votre programme Python du 2.1. pour que l’utilisateur n’ait pas à entrer la dérivée,
mais que celle-ci soit calculée numériquement par un taux de variation symétrique à 10−7 près.

c) Voit-on une différence d’efficacité des programmes des a) et b) (dérivation formelle ou numérique)
sur l’équation sin(x) = 0 ?

4

