TP S3 : autour de la méthode de Newton
dérivation numérique et formelle, méthodes de
Newton et de la sécante

1 Avant la méthode de Newton : comment dériver ?

1.1 Taux de variations bétes et calculs numériques étranges

a) Ecrire en PYTHON et en SCILAB une fonction qu’on appellera derive qui prend en argument
une fonction £ un point x0 et un nombre h et qui renvoie le taux de variation (f(zo+h) —

f(z0))/h.

b) On pense bien siir que pour avoir une bonne valeur approchée de f'(z¢), il vaut mieux
prendre h petit. Essayons d’appliquer la fonction dérive du a) & la fonction f : 2 = 2, pour
20 = 7. Le nombre dérivé exact vaut f’(x¢) = 14. Appliquer votre fonction avec h = 10~% pour
i variant de 1 a 16.

¢) Que pensez des résultats obtenus? Le plus facile & expliquer est peut-étre le résultat pour
h =10716. Pour quelle valeur de h le résultat est-il optimal ?

1.2 Taux de variations symétriques

a) Maths : justifier que pour une fonction de classe C3, on a :

f(xo +h)— f(zo - h)

Y 2
» = (o) + O,
alors qu’on a seulement :
f(zo+h)~f(zo)
h h:>0f (o) + O(h).

f(xo+h) - f(xo-h)

2h
mules précédentes permettent d’espérer que les taux de variations symétriques donnent une

meilleure approximation du nombre dérivé.

. Les for-

On appelle ici taux de variations symétriques les expressions

b) Info. : Ecrire une fonction derive2 qui prend les mémes arguments que derive et renvoie
le taux de variation symétrique.

c¢) Faire le méme test avec derive2 qu'avec dérive.

[On étudiera plus précisément les raisons des phénomenes observés aux questions ¢) en cours. ]

1.3 Excursions pour les fonctions polynomiales : gestion formelle de la
dérivation des polynomes en SCILAB

L’essentiel : la donnée d’une fonction polynomiale f : R - R, = z:zo apz® est équivalente
a la donnée de la suite de ses coefficients, i.e. un tableau [ao,...,an].
1.3.1 Déclaration d’un polynéme formel en SciLAB

On peut déclarer le polynéme formel p associé & la suite [aqg,...,a,] avec la commande poly
avec la syntaxe :

-->p=poly([2,3,1],’x’,’c’)

Explication : Le ’x’ désigne le nom de 'indéterminée, le >c’ est pour coefficients. En effet,
on peut aussi définir un polynéme a partir de la valeur de ses racines ’r’ (argument par défaut).



-->q=poly([2,3],’x’) // fabrique le polyndme unitaire dont les racines sont 2 et 3
// autrement dit (x-2)(x-3)

1.3.2 Opérations sur les polynémes formels

On peut les dériver avec la commande derivat. Comme ce ne sont pas des fonctions, il faut
une commande spéciale pour les évaluer : la commande horner (qui effectue bien sir 1’algorithme
de Horner cf. chap. S1).

1.3.3 Généralisation aux quotients de polyndémes

Tout ce qui précede s’applique encore aux quotients x — f(z) = p(z)/q(x) avec p et g polynémes.
Si p et q sont des polynomes formels, SCILAB peut gérer le quotient p/q comme un objet formel,
qu’il sait dériver, évaluer.

Conséquence : Si on veut appliquer la méthode de Newton a une fonction polynomiale
ou rationnelle mieux vaudra utiliser ces commandes pour la dérivation, pour manipuler une
valeur exacte de la fonction dérivée.

1.4 Si on veut calculer des dérivées de maniere formelle pour les fonc-
tions usuelles

n passe dans le monde du calcul formel :
e ScILAB ne fait pas de calcul formel (&4 part ce qu’on vient de dire pour les polynémes
formels), pas plus que MATLAB,
e il existe des logiciels de calculs formels comme MAPLE, MATHEMATICA, mais aussi en
YTHON, le module sympy pour SYMbolic computation with Python

Exemple :

>>> from sympy import * # oui je sais c’est dangereux de tout importer comme ca.
# mais ici le import sympy as sp demanderait trop de préfixes apres...

>>> x=symbols(’x’)

>>> diff (sin(x) ,x)

cos (x)

Vous pouvez ainsi jouer a vérifier que sympy calcule des dérivées formelles des fonctions usuelles,
comme vos calculatrices sans doute.... mais le numérique revient quand méme dans le processus de
I’évaluation.

2 La méthode de Newton

2.1 On fournit la fonction et sa dérivée

a) Ecrire une fonction PYTHON et la méme fonction en SCILAB qu’on appellera newtonl

e qui prend quatre arguments : une fonction f, sa dérivée fp que l'utilisateur a I’amabilité
d’avoir défini pour la machine, un nombre x0 et un nombre epsilon,

e applique la méthode de Newton a la fonction f en partant de xO,

e qui s’arréte quand I’écart entre deux termes successifs |x,,11 — | est plus petit que epsilon.

e et qui renvoie la derniere valeur de la suite calculée (z,.1 avec les notations du point
précédent) ainsi que le nombre d’itérations de la méthode i.e. n + 1.

Question : avec ce test d’arrét, a-t-on une estimation a priori de la différence entre la valeur

approchée (z,41) et la racine r qu’on cherche ?



b) i) Appliquer votre fonction newtonl & la fonction sin : en PYTHON, on utilisera le module
math.

Tester newtonl(sin,cos,x0,epsilon) pour x0 de 0.1 a 2 avec un pas de 0.1 et
epsilon=10"(-7).
ii) En déduire une valeur approximative de la borne supérieure bassin d’attraction de 0 &
droite de 0. On notera b cette borne supérieure.
iii) Que se passe-t-il pour xg a droite de b : la suite converge-t-elle forcément vers le zéro
qui est a droite i.e. w7
¢) A propos du test d’arrét
i) Maths : Justifier que si le zéro r recherché pour f vérifie f'(r) =0 et si f est de classe
C? (hyp. du cours) alors :

Tn+l — Tn ~ Tp =T
n—+oo

Ainsi la condition d’arrét |z,+1 — n| < € < n’est pas loin » de donner |z, —r| <e.
N.B. Cependant, comme vu dans ’exemple du cours pour les fonctions convexes (ou la
suite (z,) est décroissante), il n’y a pas de raison que r soit inclus dans [z41, 7y ]

ii) Maths : Toujours dans I'hypothése ot f/(r) # 0, justifier qu’il existe une constante
k + 0 telle que f(z,) ~  k(x,-r) et donc qu’on peut aussi utiliser comme test
n—+o0o

d’arrét la condition |f(x,)| < e.

iii) Info : Réécrire le code (plus simple) d’une fonction newton2 qui utilise le test d’arrét
du (ii)

d) On peut comparer notre fonction a celle implémentée dans scipy ou plus précisément dans
le sous-module scipy.optimize : cette fonction s’obtient via scipy.optimize.newton.
i) Lire la documentation de cette fonction de scipy.

ii) En déduire comment appliquer la méthode de Newton & f=sin avec cette fonction, en

rentrant la précision voulue.

N.B. En SCILAB comme en scipy.optimize, la commande fsolve n’utilise pas exactement
Newton comme indiqué par le help fsolve qui parle de méthode hybride de type Powell.

2.2 Version pour les polynémes en SCILAB

a) Avec les informations données au § 1.3 écrire une fonction newtonpoly qui prend en argument
un polynéome de SCILAB, un x0 et un epsilon et lui applique la méthode de Newton. On
utilisera la commande horner pour I’évaluation.

b) Tester cette méthode sur f : z ~ (z —a)(z —b) pour a et b de votre choix. Oui je sais, on
connait les racines! Mais dans ce cas, quels sont les bassins d’attraction de a et de b? Il y
a-t-il des valeurs de x0 qui posent problemes ici? Chercher numériquement la réponse a ces
questions.

c) Tester cette méthode sur f : x + 3 — 2 dont, 14 encore, on connait bien les racines. Essayez
pour les valeurs de x0 suivantes :

i) g =-0,5 : commentez le résultat ?

1
il) Expliquer par une étude théorique les problemes posées par les valeurs g = +—— et
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1
o = 1—5. Pour voir le probleme posé par cette valeur de xg on fera afficher les valeurs

successives de la suite (z,).

1
iii) Tester expérimentalement le comportement de la méthode pour les z tels que |zg| < —

7

1
|zo| > —= (pour gagner du temps, on pourra ne considérer que les z¢ > 0.)
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1

iv) Tester enfin ce qui se passe pour zg € [—,

2 ] (ou son symétrique dans les négatifs).

&l-



d) Etudions maintenant d’un point de vue différent la méthode de Newton appliquée a un

polynoéme f, : & — 23 + ax + 1 en appliquant toujours la méthode & partir de 29 = 0. On va

procéder comme on I'a fait au T.P. S1 pour 'étude de itération de f : z+ z2 +c.

i) Pour chaque valeur de o dans [-2,-1] avec un certain pas, on calcule les itérés de la
méthode de Newton pour f, a partir de 2o = 0, qu’on note (z,,). On affiche les points
(zn,,a) pour n € [20,120].

(Autrement dit, sur chaque droite horizontale d’ordonnée «, on place les points d’abs-
cisses Tp,).

ii) Le polynome f, posséde une unique racine si o > ag = —(3/2)/2 = =1.889... et trois
racines si « < ag.

Ceci peut aider & interpréter certaines zones de la figure obtenue au (i)

2.3 Version utilisant la dérivation formelle vs dérivée numérique
a) Modifier votre programme PYTHON du 2.1. pour que l'utilisateur n’ait pas & entrer la dérivée,
mais que celle-ci soit calculée formellement par sympy.

b) Modifier votre programme PYTHON du 2.1. pour que I'utilisateur n’ait pas & entrer la dérivée,
mais que celle-ci soit calculée numériquement par un taux de variation symétrique & 10~7 pres.

¢) Voit-on une différence d’efficacité des programmes des a) et b) (dérivation formelle ou numérique)

sur 'équation sin(z) =07



