
TP S2 : équations différentielles de la mécanique, avec Scilab

1 Vitesse de chute avec différents frottements fluides

On considère une chute le long de l’axe (Oz) avec un frottement fluide.
Le but est de comparer les tracés des fonctions t ↦ v(t) pour des frottements de la forme k.v,

k.v2 et k.v3, ce qu’on notera k.vα pour α = 1,2,3.
La R.F.D. donne alors en orientant l’axe (Oz) vers le bas et en notant v(t) = z′(t) :

mv′(t) = −kv(t)α +mg,

ce qu’on simplifiera en :
v′(t) = −λv(t)α + g.

Travail à faire : à l’aide de ode, tracez le graphe de t ↦ v(t) pour la C.I. v(0) = 0 pour les
trois valeurs de α proposées.

2 Etude d’un tir balistique avec différents frottements fluides

Remarque : En 1814 comme en 1914, les polytechniciens sont des artilleurs.

Un canon tire un obus avec une vitesse de norme v0 et un angle α. Le vecteur vitesse initiale
est donc de la forme v⃗(0) = v0(cos(α)e⃗x + sin(α)e⃗z) (axe e⃗z vertical vers le haut).

Durant sa trajectoire l’obus n’est soumis qu’à son poids et à une force de frottement fluide : on
va considérer différents modèles pour ce frottement.

2.1 Le cas où il n’y a pas de frottement du tout : les paraboles et la
parabole de sécurité

La relation fondamentale de la dynamique donne m
d2ÐÐ→OM

dt2
=mg⃗ s’intègre directement.

On note v⃗(0) = v0(cos(α)e⃗x + sin(α)e⃗z) et bien sûr : g⃗ = −ge⃗z (axe e⃗z vertical vers le haut).

En projection sur les axes, la R.F.D. équivaut à
⎧
⎪⎪
⎨
⎪⎪
⎩

x′′(t) = 0,
z′′(t) = −g

.

On prend M(0) = (0,0) = O dans le plan (O, e⃗x, e⃗z). On prend g = 9.81m.s−2.

a) Donnez l’expression explicite des fonctions t↦ x(t) et t↦ z(t) avec ces C.I.

b) Tracer en SciLab, une famille de courbes correspondant aux différentes trajectoires obtenues
avec un angle de tir fixé α = 30o, en faisant varier la norme v0 entre 1000 et 1500 m.s−1 avec
un pas de 100.

c) On fixe au contraire maintenant v0 = 1000m.s−1. Tracer une famille de courbes Cα corres-
pondant aux trajectoires obtenues pour différents angles de tir α.

Un problème déjà étudié par E. Torricelli (De motu projectorum 1644) et repris par J. Bernoulli
que l’a résolu à la fin du XVIIème siècle, est de déterminer la courbe de sécurité pour cette dernière
famille de paraboles : celle qui nous mettrait à l’abris des tirs.

d) Une première idée : regarder les points de hauteur maximale sur les paraboles.
Pour chacune des courbes Cα tracées, rajouter un point rouge Mα correspondant au point
de hauteur maximale de Cα. Observez la courbe formée par les Mα. Convient-elle comme
courbe de sécurité ?

e) Une meilleure idée : raisonner en sens inverse.
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i) Justifier d’abord qu’une trajectoire Cα peut aussi s’écrire comme le graphe Γa d’une
fonction :

z = −
g

2v2
0

x2
(1 + a2

) + ax; en ayant posé a = tan(α),

le nombre a = tan(α) a un sens clair : c’est la pente du vecteur v⃗(0).
ii) Prenons un point M = (x0, z0) du plan. La C.N.S. sur (x0, z0) pour qu’il existe un a tel

que (x0, z0) soit sur une courbe Γa est que le discriminant ∆ de l’équation du second
degré :

a2
(−

g

2v2
0

)x2
0 + ax0 −

g

2v2
0

x2
0 − z0 = 0,

vérifie ∆ ≥ 0.
Les points (x0, z0) tels que ∆ = 0 correspondent à la courbe de sécurité cherchée (bord
du domaine où ∆ ≥ 0). Les formules se simplifient : on peut faire tracer la courbe de
sécurité à SciLab.

2.2 Le cas d’un frottement proportionnel au vecteur vitesse

C’est encore un cas que l’on sait résoudre de manière ≪ exacte ≫ :

La relation fondamentale de la dynamique donne m
dv⃗

dt
=mg⃗ − kv⃗ qu’on réécrit :

dv⃗

dt
+

v⃗

τ
= g⃗,

où τ est donc homogène à un temps.
Données numériques : g = 9.81m.s−2 et k = 0.1N.s.m−1 et m = 140kg.

On note v⃗(0) = v0(cos(α)e⃗x + sin(α)e⃗z) et bien sûr : g⃗ = −ge⃗z (axe e⃗z vertical vers le haut).
Alors l’équation différentielle projetée sur les deux axes donne :

dvx
dt
+

vx
τ

= 0 (1) et
dvz
dt
+

vz
τ

= −g (2)

On sait bien sûr résoudre (1) et (2) et en déduire x(t) et z(t) par intégration.
En effet (1) ⇔ vx(t) = vx(0)e−t/τ et (2) ⇔ vz(t) = (vz(0) + gτ)e−t/τ − gτ .
De même qu’au § 2.1 :

a) Tracer les trajectoires correspondants d’abord à α = 30o et différentes valeurs de v0.
b) Tracer les trajectoires correspondants à v0 = 1000m.s−1 et différentes valeurs de α.

2.3 Là où on a besoin de ode : frottements fluides plus élevés

On suppose maintenant que la force de frottement est proportionnelle à v2 (on tire à partir
d’un sous-marin !)

La R.F.D. s’écrit maintenant : m
dv⃗

dt
=mg⃗ − kv.v⃗ où v = ∣∣v⃗∣∣, qu’on réécrit :

dv⃗

dt
+ λvv⃗ = g⃗,

Les équations différentielles deviennent beaucoup plus compliquées :

(S)

⎧
⎪⎪
⎨
⎪⎪
⎩

x′′(t) + λ
√

x′(t)2 + z′(t)2x′(t) = 0,
z′′(t) + λ

√

x′(t)2 + z′(t)2z′(t) = −g.

On peut néanmoins les résoudre numériquement avec SciLab

Pour cela, on crée un vecteur vertical X(t) =

⎛

⎜
⎜
⎜

⎝

x(t)
z(t)
x′(t)
z′(t)

⎞

⎟
⎟
⎟

⎠

.

On définit une fonction (t,X) ∈ R ×M4,1(R) ↦ F (t,X) ∈ M4,1(R) (qui en fait ne dépend pas
de t ici mais, cf. cours, c’est une contrainte de SciLab), telle que X ′

(t) = F (t,X(t)).
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a) Déterminer la fonction F en question.

b) Résoudre alors le système (S) ci-dessus avec ode.

c) En déduire le tracé de la courbe paramétrée t ↦ (x(t), z(t)) et tracer sur la même figure la
solution de l’équation avec frottement fluide du § 2.2 précédent avec la constante τ = 1 et les
mêmes C.I. v0 = 1 et α = π/6.

3 Oscillateurs

3.1 Comparaison pendule simple, Oscillateur harmonique

Pour l’équation du pendule simple θ′′(t) + ω2
0 sin(θ(t)) = 0 calculer les solutions pour la C.I.

θ(0) = 1, θ′(0) = 0 (pendule lâché sans vitesse initiale).
On sait que ω2

0 =
g

l
. On prend g = 9.81m.s−2 et l = 0.5m.

Tracer la courbe solution, et sur un même dessin, la courbe solution de l’O.H. avec la même
C.I. pour un temps de 0 à 10.

Moralité : L’amplitude θ(0) = 1 radians, ne peut pas être considérée bien longtemps comme
un petit mouvement ! Réessayer avec une amplitude plus petite.

3.2 Portrait de phase :

3.2.1 Pour l’oscillateur harmonique : exemple du cours

Question : Comment obtenir en SciLab un tracé simultané pour différentes conditions ini-
tiales ?

On pourra par exemple garder une vitesse initiale nulle et faire varier l’amplitude initiale.

3.2.2 Pour le pendule simple

A l’aide de ce qui précède, tracer aussi le portrait de phase du pendule simple avec les données
numériques ci-dessus. On choisira comme C.I. cette fois θ(0) = 0 et on faire varier θ′(0) entre 1
et 13m.s−1 : voir sur le graphique à partir de quelle valeur de θ′(0) quitte-t-on le comportement
oscillant ? Comment retrouver cette valeur par un calcul ?

3.2.3 Pour le pendule simple amorti

On rajoute à l’E.D. un terme en aθ′(t). On prend par exemple a = 1. Tracer une nouvelle fois
le portrait de phase avec les mêmes C.I. au 3.2.2
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