
TP S1 : Introduction à Scilab et applications aux tracés

1 Tracés de graphes de fonctions, recherches de zéros

a) Tracez le graphe de la fonction tan sur ] − π/2,5π/2[.
Remarque : SciLab va joindre les points à travers les discontinuités, comment éviter ce
phénomène ?

b) Recadrez les axes pour éviter que l’axe des ordonnées ne monte trop haut. Raffinez si
nécessaire le nombre de points pris...
Bôıte à outils :
● Essayer d’utiliser le Zoom de la fenêtre. Essayez aussi le menu Edition de la fenêtre gra-

phique, vous devrez aussi pouvoir mettre les axes au centre.
● En ligne de commande : la commande zoom_rect([xmin,y min,xmax,ymax]) permet de

définir précisément la fenêtre d’affichage. Un autre avantage est que sinon, on doit recom-
mencer le zoom à chaque réexécution du programme ! On peut revenir à l’affichage ≪ de
base ≫ avec unzoom.

● En ligne de commande, pour centrer les axes :
a=gca()// pour get current axes : la donnée est stockée dans la variable a
a.x_location="middle" // méthode agissant sur la variable a
a.y_location="middle"

c) Tracez sur le même graphe la première bissectrice, d’une autre couleur.

d) Déterminez graphiquement les coordonnées des points d’intersection entre les deux courbes
dans [0,2π].

e) Déterminez numériquement ces points d’intersections avec la fonction fsolve et rajoutez les
sur la figure avec le symbole o d’une autre couleur.

2 Etude de familles de fonctions et de suites définies impli-
citement

2.1 Premier exemple de tracés simultanés :

a) Tracer de manière automatique, dans une même fenêtre, le graphe des fonctions fn ∶ [0,1] →
[0,1], x ↦ xn pour n = 1, . . . ,10. On donnera (avec plot2d) au graphe de fn la couleur
numéro n (pratique non ?)

b) Faire la même chose pour les x↦ xα pour α allant de 0.1 à 10 avec un pas de 0.1 (cette fois
il faudra faire quelque chose de différent pour les couleurs).

2.2 La suites des polynômes de Taylor de l’exponentielle : programma-
tion et tracé d’une famille de fonctions

On note fn ∶ x ↦
n

∑
k=0

xk

k!
. On démontrera bientôt que pour chaque x, fn(x) Ð→

n→+∞
ex.

Motivation (double) ● On veut définir une fonction Taylor_exp(x,n) qui prend comme

argument un réel x et un entier n et renvoie
n

∑
k=0

xk

k!
.

● En fait comme ensuite on veut tracer cette famille de fonctions on aura besoin que les fonctions
calculées s’appliquent à une variable vectorielle. Cela demandera quelque aménagements...

a) Fabriquez une fonction SciLab, qui prend comme arguments un entier n et un flottant x et
renvoie la valeur de fn(x).
(M1) avec une boucle for de manière très standard (cf. exples vus en Python)
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(M2) par calcul sur les vecteurs, sans boucle for. Pour cela il s’agit de créer un vecteur
contenant les xk/k! puis d’utiliser la fonction sum.
Essayer de tracer une des fonctions obtenues par exemple pour n = 5, en l’appliquant à un
vecteur x ?

b) Fabriquer une deuxième fonction qui fait la même chose mais accepte une variable x vectorielle
et s’applique alors à chaque entrée de x : une façon de faire est d’utiliser une boucle for) qui
va parcourir les entrées et créer un vecteur y correspondant.
Intérêt : on peut alors tracer le graphe !

c) Aller voir dans l’aide en ligne comment fonctionne feval et du coup comment tracer le graphe
d’une fonction fn même avec votre fonction du a).
La commande feval réalise un mappage de vecteurs.

2.3 La suites des polynômes de Taylor de l’exponentielle : tracés, zéros

a) Tracez sur une même figure les graphes des fonctions fn pour n ∈ ⟦1,20 ⟧ et x ∈ [−5,5].
b) Recadrez, zoomez, pour voir les éventuels zéros des fn.

c) Exercice de mathématique :

i) Démontrer que les f2n ne s’annulent pas sur R et que les f2n+1 ont un unique zéro dans
R.

ii) On note xn l’unique zéro de f2n+1. A l’aide de SciLab faire une conjecture sur le compor-
tement de la suite (xn). Puis démontrer cette conjecture en faisant des mathématiques.

3 Tracés de courbes paramétrées

Après avoir étudié sur quel intervalle de temps t il est bon de les tracer, et les symétries qui
devront apparâıtre, tracez les courbes paramétrées définies par

a) t ↦ (cos(3t), sin(t) + cos(t)). Placer aussi le point M(0) avec une étoile rouge et tracer un
segment tangent en ce point en rouge aussi.

b) t↦ (3 cos t− 2 sin3 t, cos(4t)). Dans le menu édition de la figure, voir si vous pouvez modifier
la place des axes : mettez les axes au centre. Vous pouvez aussi le faire en ligne de commande
comme indiqué ci-dessous

c) t↦ ( t + 1
t(t − 1) ,

t(t + 1)
t − 1

).

i) Prenez garde aux opérations sur les vecteurs de données t.

ii) Prenez garde : SciLab va joindre les points aux travers des discontinuités. Comment
éviter ce phénomène (déjà rencontré pour la fonction tangente) !

iii) Comment pourrait-on calculer s’il y a des droites asymptotes ?

4 Suites récurrentes un+1 = f(un) : première partie

4.1 Représentation des itérées d’une fonction f ∶ x↦ x2 + c

Notation : Pour une fonction f ∶ R→ R, et un entier n ∈ N∗, on note f○n = f ○ ⋅ ⋅ ⋅ ○ f
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n fois f

.

On a vu au chapitre sur les suites récurrentes que même pour une simple fonction polynomiale
du second degré f , les suites un+1 = f(un) donnent des comportements assez riches... en fait la
richesse (et la complexité) des ces suites va bien au delà des exemples que nous avons étudiés.

Une première façon de comprendre cette complexité est de tracer à quoi ressemble f○n.

Exercice : Tracez le graphe de f○n pour f ∶ x↦ x2 + c pour c = −1,39 et n = 6,10,15, notamment
pour x ∈ [−1,1]. Remarque : quel est le degré de cette fonction polynomiale ?

2



4.2 Histoire d’un germe

Pour chaque point x0 (appelé germe) on considère la suite (xn) définie par ce x0 et ∀n ∈ N,
xn+1 = f(xn).

Avec la notation du paragraphe précédent, on a xn = f○n(x0).
Pour avoir une représentation graphique de la suite (xn) on va tracer les points (n,xn) pour

n ∈ N (bien sûr en fait pour une partie de N !). Ce graphe sera appelé l’histoire du point x0.
On choisit ici x0 = −1 et toujours f ∶ x↦ x2 + c. Tracez les points (n,xn) dans les différents cas

suivants :

a) si c = −1. Justifier le résultat visible sur le tracé.

b) si c = −1,3. Commentez le résultat. Regardez des valeurs numériques plus précises pour
préciser votre analyse.

c) si c = −1,8. Commentez ?

4.3 Etude mathématique plus précise et visualisation

On considère toujours fc ∶ x ↦ x2 + c.
a) Déterminer la CNS sur c pour que fc ait un point fixe (réel !). On suppose désormais cette

condition réalisée.

b) Déterminer la CNS sur c pour qu’un de ces deux points fixes soit attractif.

c) Déterminer la CNS sur c pour qu’en outre fc ait des points périodiques de période 2 i.e. il
existe des x ∈ R tels que (f ○ f)(x) = x et f(x) ≠ x.

d) On pourrait de même se demander lesquels parmi ces points périodiques de périodes 2 sont
attractifs pour f ○ f ... regarder de même les points périodiques de période 4 et c... mais cela
on a le voir avec l’ordinateur !
Pour cela, réaliser le tracé suivant appelé figure de la cascade.
Pour différentes valeurs de c ∈ [−2,1/4] (disons 10, puis 50 puis 100), on va

i) Calculer tous les termes de la suite un ayant comme valeur initiale u0 = 0 (important)
et telle que un+1 = fc(un), pour n ∈ ⟦1,100 ⟧.

ii) Tracer les points (u(n), c) pour n ∈ ⟦50,100 ⟧ dans un cadre avec des abscisses dans
[−2,2] et des ordonnées c ∈ [−2,1/4].�� ��On utilisera plot2d avec l’argument style=[0] pour avoir des points non reliés.

Autrement dit : pour chaque valeur de c en ordonnée, on trace 50 points sur la droite
horizontale d’ordonnée c correspond aux 50 valeurs de la suite (un) correspondant à cette
valeur de c.
Pourquoi part-on de n = 50 pour tracer les un ? Pour éliminer les premières valeurs non
significatives ! A partir de 50, le comportement de la signe ≪ vers l’infini ≫ s’affirme...

e) Comment interpréter la zone du graphe obtenu pour c > −3/4 ?

f) Même question pour c ∈] − 5/4,−3/4[ ?

g) A partir du graphe précédent, en zoomant, en rajoutant éventuellement des valeurs de c
déterminer à partir de quelle valeur de c la suite a 4 points périodiques attractifs.

5 La même suite récurrente dans le monde complexe

On considère la fonction définie par la même formule f ∶ z ∈ C↦ z2 + c ∈ C avec c ∈ C.
L’itération de cette fonction permet de mettre en évidence des fractales célèbres.
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Ensemble de Mandelbrot

Problème : on cherche à savoir pour quelle valeur de c ∈ C la suite (zn), définie par z0 = 0
(ce choix de valeur initiale est important) et zn+1 = fc(zn), reste bornée.

Ce qu’on veut faire On représente pour chaque valeur de c = a + ib avec a ∈ [−2,2] et
b ∈ [−2,2], le point d’affixe c en bleu si la suite est bornée et en rouge si la suite n’est pas bornée.

Pour tester si la suite est bornée, on peut se contenter ici de calculer 20 termes et de tester si
le module du dernier terme calculé est plus grand que 100.

Ceci semble très approximatif : en fait, on peut montrer que si pour un n0, ∣zn0 ∣ > ∣c∣ + 1 alors
la suite est non bornée. Donc notre comparaison avec 100 est très suffisante !

Comment tracer des points :
(M1) Avec plot : ce sera assez peu précis, on peut tracer des ”ro” et ”bo” dans plot.
(M2) Avec Matplot La commande Matplot prend en entrée un tableau A dans lequel on

met des numéros de couleurs. Si on met par exemple 200 × 300 entrées on aura alors un joli tracé
200 × 300 points dont voici le résultat. A vous de jouer (voire de faire mieux !)
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