Chapitre S3 : algorithmes de recherches de zéros de fonctions'

0 Préliminaire : ce que se cache derriere le fsolve ?

On a utilisé jusqu’a maintenant la commande fsolve de SCILAB : fsolve(x0,f) cherche un
zéro de £ au voisinage d’un certain x0.

De méme en PYTHON, il existe une commande fsolve dans le module SCIPY consacré au calcul
scientifique.

On a vu aussi que cette commande est parfois assez sensible au choix de la condition initiale
x0. Par exemple pour résoudre I’équation tan(x) =z (cf. TP S1).

Ce qui suit va nous expliquer ce qui est caché derriere fsolve et le pourquoi de ces phénomenes
de sensibilité au choix de x0.

Remarque préliminaire importante : I'étude numérique des zéros d’une fonction com-
mence déja par I’étude des variations. On essaie (si possible!) de se placer sur un intervalle
I sur lequel f|; est strictement monotone et change de signe, pour étre str de I'unicité du
zéro que 'on cherche & approcher. La représentation graphique y aide bien sir!

1 La méthode déja connue : dichotomie

{Revoir le T.P. 6}

1.1 Entrées et sorties de cette méthode

e Données : f € C([a,b],R) telle que f(a) <0 et f(b) >0 (quitte & remplacer f par —f).

e Algo. : fabrique des suites (ay,) et (b,) telles que f(a,) <0, f(b,) >0 et b, —a, =(b-a)/2".

e Conséquence théorique : la limite commune a ces deux suites adjacentes donne un zéro r de
f, ce qui démontre le T.V.L

e Conséquence pratique : en s’arrétant a une étape n, les nombres a,et b, fournissent un
encadrement d’un zéro de f a (b—a)/2" pres.

1.2 Les avantages de cette méthode, et ce qu’on peut espérer de mieux

e Avantages :
— elle s’applique & n’importe quelle fonction continue (hyp. de régularité tres faible sur f),
— elle converge toujours vers un zéro,
— la convergence est géométrique : en O(—”)

e Ce qu’on peut espérer de mieux : le processus de dichotomie est indépendant de la forme de
la fonction f :

pour des bonnes fonctions f (plus régulieres, par exemple C?), on va trouver des méthodes
qui vont plus vite en tenant mieux compte des propriétés de f.
En revanche, ces méthodes ne convergeront pas forcément... donc plus vite mais moins sur...

e Remarque pour plus tard : Quand vous étudierez des fonctions des fonctions de plusieurs
variables, disons f : R™ — R™, la dichotomie n’aura plus de sens, il faudra bien d’autres
méthodes. Il se trouve qu’on celles qu’on va développer ici se généraliseront aussi a ce cadre-la.

2 Introduction aux méthodes itératives

2.1 L’idée de base : remplacer les zéros par des points fixes

On connalt bien le fait suivant :



Pour g continue, si une suite (uy,), définie par Vn € N, upy1 = g(uy),
converge, alors sa limite est un point fixe de g.

Moralité :

Numériquement, les points fixes d’une fonction g s’approchent en
itérant des suites un41 = g(uy), pourvu que ces suites convergent. On
parle d’approche itérative.

Principe des méthodes itératives

Pour résoudre une équation f(x) = 0, on la remplace par une équation équivalente g(x) = z,
en choisissant g de sorte que, pour uy dans le voisinage du zéro pressenti :

o les suites (u,,) définies par un41 = g(u,) convergent effectivement,

e et cette convergence soit rapide.

L’idée la plus évidente pour la fonction g

Bien stir f(z) = 0 < f(x)+ 2 = z, et donc on peut considérer g(x) = f(z) + x et les suites
tn+1 = g(uy) associées. Le probleme est que ces suites ne convergent pas forcément, comme on va
le revoir apres le petit rappel suivant.

2.2 Ce qu’on sait déja sur la convergence vers les points fixes

a) Si g est k-lipschitzienne sur I =[a,b] avec k <1 alors : la suite (u,) définie par ug € I
et Ups1 = g(up)...

b) Caract. commode : Pour g€ C!(I,R), on sait que g est k-lip. sur [ ssi

c¢) Pour g € C}(I,R) un point fixe a € I de g est dit attractif ssi |g’(a)| < 1. Dans ce
cas, il existe un voisinage V = [a —€,a+¢] de a surlequel g est k-lip. avec k<let siugeV ...

d) Avec les notations du d), a est dit répulsif ssi |g’(a)| > 1. Dans ce cas, la seule
possibilité pour que (u,,) converge vers a est que (u,) soit constante égale & a APCR.

2.3 Ce que donne ’exemple naif de g(z) = f(z) +x

Imaginons qu’on veuille résoudre une équation du troisieme degré f(z) =0 o f(z) = 2> -4z +1.
L’idée naive de chercher les points fixes de g(z) = f()+ nous donne la fonction g : x = 2> -3z +1
dont le graphe est en rouge, celui de f est en bleu.



Mauvaise nouvelle : deux points fixes de g sont clairement répulsifs.

3 Construction d’une fonction g tres efficace : la méthode
de Newton

Hypotheése : On se donne une fonction f dérivable sur un intervalle I contenant une racine r de
Péquation f(r) =0. On fixe un zq € I pas trop loin du zéro que 'on cherche.

3.1 Idée géométrique de la méthode

On considere la tangente T,,,1'; au graphe de f au point d’abscisse xy. Si celle-ci coupe 1'axe,
on note z; l'abscisse de ce point d’intersection dont on espere qu’il est plus proche de r. On
recommence alors cette construction & partir du point (x1, f(x1)). On espere que cela définit une
suite (z,) et qu’elle converge vers r.

y=fx)

3.2 Traduction algébrique
A Détape n, 'équation de la tangente au point M,, = (xn, f(x,)) est :

Y= f(xn) + f/(L'n)(.T _xn)'

Donc le point z,,,1 s’il existe est solution de I’équation :

0= f(zn) + f'(xn) (@ns1 — Tn),

ce qui équivaut & (en supposant bien siir que f'(x,) # 0.



_ f(xn)
f’(mn)

Tn+l = Tn

3.3 Quelques écueils a éviter du point de vue global

y=/x) y=/x) y=fx)

e L’écueil de la figure 1 correspond & un point au f’ s’annule : tangente horizontale, la suite
n’est plus définie, cela se voyait déja au 3.2

e Méme si f’' ne s’annule pas, et donc, dans le cas des figure ou f est croissante, f’ > 0, la
figure 2 montre que x; peut sortir de ’ensemble de définition de f. La fonction f de cette figure
est concave.

e Les figures 3 et 4 montrent une fonction avec un point d’inflexion et ou la suite (z,) ne
converge pas.

3.4 Résultat global pour le cas part. des fonctions st. croissantes convexes

Nous le formulons sous la forme d’un :
Exercice : Soit f € C?([a,b],R) avec f' >0 et f” >0 avec f(a) <0 et f(b) >0.

T
a) Montrer que la suite (z,,) définie par xg = b et pour tout n € N, x,,41 = x,, f(zn) est bien

T iy
définie pour tout n € N et montrer qu’elle est décroissante. f(en)

Indication : Faire un dessin!

b) Montrer que la suite (z,) converge vers un nombre que l'on appelle .

¢) Montrer que [ est 'unique zéro de f sur [a,b].

d) Formuler le théoréme de convergence globale que ’on vient de démontrer. En appliquant
le résultat précédent a —f qu’obtient-on ?

3.5 Etude de l’attractivité du point fixe dans la méthode de Newton

Vu le résultat obtenu au § 3.4, au moins dans ce cas, on est sir que le point fixe n’est pas
répulsif. On va voir qu’on a en fait un résultat tres fort :

3.5.1 Une propriété générale de la méthode de Newton

Exercice a faire : On se donne f € C?>(I,R) avec r un zéro de f dans I telle que f’ ne s’annule

pas sur I, et on note Yz eI, p(x) =x— J{,((x)) Calculer ¢'(r).
x
Définition : Un point fixe  d’une application ¢ tel que ¢'(r) = 0 est appelé point fize superat-

tractif.
On vient de démontrer la :

Propriété La méthode de Newton transforme toujours un zéro de f en un point fixe superattractif

f(z)
f'(x)

dep:z—»z-



3.5.2 Propriété générale qui justifie le mot superattractif

Bien slir un point fixe superattractif est en particulier attractif et comme |¢’(a)| < k pour tout
k, la convergence des suites associées un+1 = ©(uy) est en O(k™) pour tout k (et donc aussi en
o(k™) pour tout k). Beaucoup mieux, cette notion donne encore au saut de rapidité, comme on le
démontre dans la prop. suivante :

Propriété : Soit ¢ : I = [a,b] - R une fonction de classe C?> quelconque ayant un point

fixe r superattractif i.e. tel que ¢'(r) =0. On note My = sup |f"|. Alors :
[a,b]

M.
(1) Vael, lp(a) ~rl < 2o 1P,
(C2) On en déduit que pour tout n € N,

M.
(C3) Sion choisit xg pour que 72|x0—r| < 1, alors la suite définie par z,+1 = p(z,) converge

n M
vers 7 en O(k? ) on k = 72|x0 —r|. On dit que la convergence est supergéométrique.

Exercice a faire en classe : prouver cette propriété.

1 M. 1
Illustration numérique : Si on choisit z¢ pour |xg — 7| < alors k = —2|zg -7 < — et la
5My 2 10

(C2) ci-dessus donne que :
2 1 o

—(=)?
My 107

Le nombre de décimales en approximant r par x, double & chaque étape : en laissant de coté
= 101924 pres, donc plus de

VneN, |z, -r| <

. ’ . . . N - 10
la constante 2/M, avec 10 itérations on a une approximation & 1072
mille décimales exactes.

3.6 Conséquence des résultats § 3.5 : convergence locale

On obtient immédiatement le :

Thm. de convergence locale : Soit f € C*(I,R) ayant un zéro r dans I telle que f’
ne s’annule pas sur un voisinage V de r dans I. Il existe un voisinage W c V de r tel
que si xg € V, la méthode de Newton appliquée a f a partir du point xy converge super-
géométriquement vers zg.

Remarque 1 : Ce théoreme s’applique méme si r est un point d’inflexion de f, puisque les preuves
du § 3.5 n’utilisent pas le signe de f”.

Remarque 2 : L’hyp. C3 est purement technique, pour que ¢ soit C2 et que la preuve faite plus
haut s’applique. En travaillant un peu plus, on peut diminuer cette hypothese de régularité, mais
ce n’est pas crucial ici pour nous

Remarque 3 : Le probleme crucial pour ’analyse numérique est de savoir comment étre str de
tomber dans le bon voisinage W ! Et ce n’est pas si simple, on verra des exemples au T.P. S3.

3.7 Mise en oeuvre de la méthode de Newton sur machine :

On la fera au T.P. S3 : on veut fabriquer une fonction (en PYTHON ou ScILAB) qui prend en
argument £, x0,n et calcule l'effet de la méthode de Newton itérée n a partir de x0. Pour cela, on
a besoin d’un calcul de f.

On verra les différentes méthodes possibles en T.P :

e la plus évidente étant de remplacer f'(z() par un petit taux de variation de f autour de zg :

on verra en T.P. comment ces taux de variations peuvent donner des écarts de calculs par
rapport au nombre dérivé.



e on verra en T.P. l'intérét de considérer plutot des taux de variations symétriques,

e Pour une fonction explicite dont on connait explicitement la dérivée, on peut aussi utiliser
directement ’expression de la dérivée. Les logiciels de calculs formels permettent de mettre
cela aussi dans le programme. C’est possible en PYTHON avec le module SYMPY ( SYMbolic
Computation with PYthon).



