
Chapitre S3 : algorithmes de recherches de zéros de fonctions

0 Préliminaire : ce que se cache derrière le fsolve ?

On a utilisé jusqu’à maintenant la commande fsolve de SciLab : fsolve(x0,f) cherche un
zéro de f au voisinage d’un certain x0.

De même en Python, il existe une commande fsolve dans le module SciPy consacré au calcul
scientifique.

On a vu aussi que cette commande est parfois assez sensible au choix de la condition initiale
x0. Par exemple pour résoudre l’équation tan(x) = x (cf. TP S1).

Ce qui suit va nous expliquer ce qui est caché derrière fsolve et le pourquoi de ces phénomènes
de sensibilité au choix de x0.�

�

�

�
Remarque préliminaire importante : l’étude numérique des zéros d’une fonction com-
mence déjà par l’étude des variations. On essaie (si possible !) de se placer sur un intervalle
I sur lequel f∣I est strictement monotone et change de signe, pour être sûr de l’unicité du
zéro que l’on cherche à approcher. La représentation graphique y aide bien sûr !

1 La méthode déjà connue : dichotomie�� ��Revoir le T.P. 6

1.1 Entrées et sorties de cette méthode

● Données : f ∈ C([a, b],R) telle que f(a) < 0 et f(b) > 0 (quitte à remplacer f par −f).
● Algo. : fabrique des suites (an) et (bn) telles que f(an) ≤ 0, f(bn) ≥ 0 et bn − an = (b− a)/2n.
● Conséquence théorique : la limite commune à ces deux suites adjacentes donne un zéro r de

f , ce qui démontre le T.V.I.
● Conséquence pratique : en s’arrêtant à une étape n, les nombres anet bn fournissent un

encadrement d’un zéro de f à (b − a)/2n près.

1.2 Les avantages de cette méthode, et ce qu’on peut espérer de mieux

● Avantages :
– elle s’applique à n’importe quelle fonction continue (hyp. de régularité très faible sur f),
– elle converge toujours vers un zéro,

– la convergence est géométrique : en O(
1
2n

).
● Ce qu’on peut espérer de mieux : le processus de dichotomie est indépendant de la forme de

la fonction f :�
�

�
�

pour des bonnes fonctions f (plus régulières, par exemple C2), on va trouver des méthodes
qui vont plus vite en tenant mieux compte des propriétés de f .
En revanche, ces méthodes ne convergeront pas forcément... donc plus vite mais moins sûr...

● Remarque pour plus tard : Quand vous étudierez des fonctions des fonctions de plusieurs
variables, disons f ∶ Rn → Rm, la dichotomie n’aura plus de sens, il faudra bien d’autres
méthodes. Il se trouve qu’on celles qu’on va développer ici se généraliseront aussi à ce cadre-là.

2 Introduction aux méthodes itératives

2.1 L’idée de base : remplacer les zéros par des points fixes

On connâıt bien le fait suivant :
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Pour g continue, si une suite (un), définie par ∀n ∈ N, un+1 = g(un),
converge, alors sa limite est un point fixe de g.

Moralité :�
�

�
�

Numériquement, les points fixes d’une fonction g s’approchent en
itérant des suites un+1 = g(un), pourvu que ces suites convergent. On
parle d’approche itérative.

Principe des méthodes itératives

Pour résoudre une équation f(x) = 0, on la remplace par une équation équivalente g(x) = x,
en choisissant g de sorte que, pour u0 dans le voisinage du zéro pressenti :
● les suites (un) définies par un+1 = g(un) convergent effectivement,
● et cette convergence soit rapide.

L’idée la plus évidente pour la fonction g

Bien sûr f(x) = 0 ⇔ f(x) + x = x, et donc on peut considérer g(x) = f(x) + x et les suites
un+1 = g(un) associées. Le problème est que ces suites ne convergent pas forcément, comme on va
le revoir après le petit rappel suivant.

2.2 Ce qu’on sait déjà sur la convergence vers les points fixes

a) Si g est k-lipschitzienne sur I = [a, b] avec k < 1 alors : la suite (un) définie par u0 ∈ I
et un+1 = g(un)...

b) Caract. commode : Pour g ∈ C1(I,R), on sait que g est k-lip. sur I ssi

c) Pour g ∈ C1(I,R) un point fixe a ∈ I de g est dit attractif ssi ∣g′(a)∣ < 1. Dans ce
cas, il existe un voisinage V = [a− ε, a+ ε] de a surlequel g est k-lip. avec k < 1 et si u0 ∈ V ...

d) Avec les notations du d), a est dit répulsif ssi ∣g′(a)∣ > 1. Dans ce cas, la seule
possibilité pour que (un) converge vers a est que (un) soit constante égale à a APCR.

2.3 Ce que donne l’exemple näıf de g(x) = f(x) + x

Imaginons qu’on veuille résoudre une équation du troisième degré f(x) = 0 où f(x) = x3−4x+1.
L’idée näıve de chercher les points fixes de g(x) = f(x)+x nous donne la fonction g ∶ x↦ x3−3x+1
dont le graphe est en rouge, celui de f est en bleu.
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Mauvaise nouvelle : deux points fixes de g sont clairement répulsifs.

3 Construction d’une fonction g très efficace : la méthode
de Newton

Hypothèse : On se donne une fonction f dérivable sur un intervalle I contenant une racine r de
l’équation f(r) = 0. On fixe un x0 ∈ I pas trop loin du zéro que l’on cherche.

3.1 Idée géométrique de la méthode

On considère la tangente Tx0Γf au graphe de f au point d’abscisse x0. Si celle-ci coupe l’axe,
on note x1 l’abscisse de ce point d’intersection dont on espère qu’il est plus proche de r. On
recommence alors cette construction à partir du point (x1, f(x1)). On espère que cela définit une
suite (xn) et qu’elle converge vers r.

3

En général, le processus qui suit, décrit au pas à pas

et illustré par le schéma ci-contre, donne satisfaction.

Initialisation On pose x0 = b.

Étape 1 On mène depuis le point (x0, f (x0)) la tan-

gente au graphe ¡f de f . En général, celle-ci recoupe le

segment [a, b] en un point d’abscisse x1. xx0x1x2

y=f(x)

r

y=T0(x)

y=T1(x)

Étape 2 On procède à l’identique pour obtenir x2, etc. On espère que la suite (xn)n est bien

définie et qu’elle converge vers r.

3 Existence et convergence de l’algorithme Quitte à renforcer les hypothèses sur f ,

nous allons voir que le processus de Newton est bien défini, et qu’il converge de surcroît vers r.

Dans l’état actuel, la méthode de Newton présente des failles. En voici l’étalage sur quelques

configurations “bien” choisies.

x

y=f(x)

x0x1r
L

x

y=f(x)

x0 = x2
  rx1

L

x

y=f(x)

rx1 x0 x2x3x

y=f(x)

x0rx1

N

NN

• Pour éviter la première configuration, nous supposerons que f 0 ne s’annule jamais. Au-

trement dit, et compte tenu de la stricte croissance de f , cela signifie que f 0 > 0 sur [a, b].

• Mais cette seule condition n’assure pas encore l’existence de (xn) (deuxième figure), ni

même sa convergence (troisième et quatrième figures). Nous supposerons que les tangentes sont

toujours sous la courbes, c’est à dire que f est convexe. Pour simplifier, nous supposerons f de

classe C2
, ce qui revient à ramener la condition précédente à la simple information de signe :

f 00 > 0.

Théorème 1 Nous supposons désormais f : [a, b] ! R de classe C2 avec f 0 > 0 et f 00 > 0,

avec toujours f (a) < 0 et f (b) > 0. Si l’on part de x0 = b, alors la suite (xn) existe bien et

converge vers r. De plus, (xn) converge en décroissant.

Preuve Démontrons d’abord par récurrence l’existence et la monotonie de la suite. Choisissons

l’hypothèse P (n) suivante :

P (n) : {xn existe et r 6 xn 6 xn¡1... 6 x0 = b}

La récurrence est fondée. Examinons son hérédité en supposant le rang n acquis. On peut

mener la tangente (y = Tn (x)) en (xn, f (xn)) à la courbe ¡f puisque f est dérivable. Cette

3.2 Traduction algébrique

A l’étape n, l’équation de la tangente au point Mn = (xn, f(xn)) est :

y = f(xn) + f ′(xn)(x − xn).

Donc le point xn+1 s’il existe est solution de l’équation :

0 = f(xn) + f ′(xn)(xn+1 − xn),

ce qui équivaut à (en supposant bien sûr que f ′(xn) ≠ 0.
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xn+1 = xn −
f(xn)

f ′(xn)
.

3.3 Quelques écueils à éviter du point de vue global
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● L’écueil de la figure 1 correspond à un point au f ′ s’annule : tangente horizontale, la suite
n’est plus définie, cela se voyait déjà au 3.2

● Même si f ′ ne s’annule pas, et donc, dans le cas des figure où f est croissante, f ′ > 0, la
figure 2 montre que x1 peut sortir de l’ensemble de définition de f . La fonction f de cette figure
est concave.

● Les figures 3 et 4 montrent une fonction avec un point d’inflexion et où la suite (xn) ne
converge pas.

3.4 Résultat global pour le cas part. des fonctions st. croissantes convexes

Nous le formulons sous la forme d’un :
Exercice : Soit f ∈ C2([a, b],R) avec f ′ > 0 et f ′′ ≥ 0 avec f(a) < 0 et f(b) > 0.

a) Montrer que la suite (xn) définie par x0 = b et pour tout n ∈ N, xn+1 = xn −
f(xn)

f ′(xn)
est bien

définie pour tout n ∈ N et montrer qu’elle est décroissante.
Indication : Faire un dessin !
b) Montrer que la suite (xn) converge vers un nombre que l’on appelle l.
c) Montrer que l est l’unique zéro de f sur [a, b].
d) Formuler le théorème de convergence globale que l’on vient de démontrer. En appliquant

le résultat précédent à −f qu’obtient-on ?

3.5 Etude de l’attractivité du point fixe dans la méthode de Newton

Vu le résultat obtenu au § 3.4, au moins dans ce cas, on est sûr que le point fixe n’est pas
répulsif. On va voir qu’on a en fait un résultat très fort :

3.5.1 Une propriété générale de la méthode de Newton

Exercice à faire : On se donne f ∈ C2(I,R) avec r un zéro de f dans I telle que f ′ ne s’annule

pas sur I, et on note ∀x ∈ I, ϕ(x) = x −
f(x)

f ′(x)
. Calculer ϕ′(r).

Définition : Un point fixe r d’une application ϕ tel que ϕ′(r) = 0 est appelé point fixe superat-
tractif.

On vient de démontrer la :

Propriété La méthode de Newton transforme toujours un zéro de f en un point fixe superattractif

de ϕ ∶ x↦ x −
f(x)

f ′(x)
.
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3.5.2 Propriété générale qui justifie le mot superattractif

Bien sûr un point fixe superattractif est en particulier attractif et comme ∣ϕ′(a)∣ ≤ k pour tout
k, la convergence des suites associées un+1 = ϕ(un) est en O(kn) pour tout k (et donc aussi en
o(kn) pour tout k). Beaucoup mieux, cette notion donne encore au saut de rapidité, comme on le
démontre dans la prop. suivante :

Propriété : Soit ϕ ∶ I = [a, b] → R une fonction de classe C2 quelconque ayant un point
fixe r superattractif i.e. tel que ϕ′(r) = 0. On note M2 = sup

[a,b]

∣f ′′∣. Alors :

(C1) ∀x ∈ I, ∣ϕ(x) − r∣ ≤
M2

2
∣x − r∣2,

(C2) On en déduit que pour tout n ∈ N,

∣xn − r∣ ≤
2

M2
[
M2

2
∣x0 − r∣]

2n

(C3) Si on choisit x0 pour que
M2

2
∣x0−r∣ < 1, alors la suite définie par xn+1 = ϕ(xn) converge

vers r en O(k2n

) où k =
M2

2
∣x0 − r∣. On dit que la convergence est supergéométrique.

Exercice à faire en classe : prouver cette propriété.

Illustration numérique : Si on choisit x0 pour ∣x0 − r∣ <
1

5M2
alors k =

M2

2
∣x0 − r∣ ≤

1
10

et la

(C2) ci-dessus donne que :

∀n ∈ N, ∣xn − r∣ ≤
2

M2
(

1
10

)
2p

.

Le nombre de décimales en approximant r par xn double à chaque étape : en laissant de côté
la constante 2/M , avec 10 itérations on a une approximation à 10−210

= 101024 près, donc plus de
mille décimales exactes.

3.6 Conséquence des résultats § 3.5 : convergence locale

On obtient immédiatement le :

Thm. de convergence locale : Soit f ∈ C3(I,R) ayant un zéro r dans I telle que f ′

ne s’annule pas sur un voisinage V de r dans I. Il existe un voisinage W ⊂ V de r tel
que si x0 ∈ V , la méthode de Newton appliquée à f à partir du point x0 converge super-
géométriquement vers x0.

Remarque 1 : Ce théorème s’applique même si r est un point d’inflexion de f , puisque les preuves
du § 3.5 n’utilisent pas le signe de f ′′.

Remarque 2 : L’hyp. C3 est purement technique, pour que ϕ soit C2 et que la preuve faite plus
haut s’applique. En travaillant un peu plus, on peut diminuer cette hypothèse de régularité, mais
ce n’est pas crucial ici pour nous

Remarque 3 : Le problème crucial pour l’analyse numérique est de savoir comment être sûr de
tomber dans le bon voisinage W ! Et ce n’est pas si simple, on verra des exemples au T.P. S3.

3.7 Mise en oeuvre de la méthode de Newton sur machine :

On la fera au T.P. S3 : on veut fabriquer une fonction (en Python ou SciLab) qui prend en
argument f, x0,n et calcule l’effet de la méthode de Newton itérée n à partir de x0. Pour cela, on
a besoin d’un calcul de f ′.

On verra les différentes méthodes possibles en T.P :
● la plus évidente étant de remplacer f ′(x0) par un petit taux de variation de f autour de x0 :

on verra en T.P. comment ces taux de variations peuvent donner des écarts de calculs par
rapport au nombre dérivé.
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● on verra en T.P. l’intérêt de considérer plutôt des taux de variations symétriques,
● Pour une fonction explicite dont on connâıt explicitement la dérivée, on peut aussi utiliser

directement l’expression de la dérivée. Les logiciels de calculs formels permettent de mettre
cela aussi dans le programme. C’est possible en Python avec le module SymPy ( SYMbolic
Computation with PYthon).
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