
Chapitre S2 : Equations différentielles avec Scilab

1 Les commandes de calcul d’intégrales (bôıte noire ou grise)

Au T.P. 6. nous avons vu deux algorithmes de calcul numérique d’intégrales : méthode des
rectangles et méthode des trapèzes. Nous reviendrons sur des algorithmes plus performants. Ici, il
s’agit seulement de donner les fonctions SciLab faisant des calculs numériques d’intégrales.

1.1 Intégration d’une expression (bôıte noire pour nous)

Disons qu’on veut une valeur approchée de 2∫
1

−1

√
1 − t2dt.

integrate(’2*sqrt(1-t^2)’,’t’,-1,1)

N.B. Notez que l’expression est donnée par une châıne de caractères (entre quotes) et la variable
d’intégration aussi.

1.2 Intégration d’un tableau de valeurs

Parfois on ne connâıt pas de formule pour une fonction (qui correspond p. ex. à un relevé
expérimental) on a juste ses valeurs pour différentes valeurs de la variable. On peut alors considérer
l’interpolation affine par morceaux de cette fonction et ensuite sommer des trapèzes. Pour tricher
voyons ce que cela donne pour (suffisamment de) valeurs de la fonction précédente !

x=-1:0.01:1
y=2*sqrt(1-x^2)
inttrap(x,y)

C’est moins bon, même si on remplace par le pas par 0.001, donc la technique d’intégration
numérique de SciLab est plus efficace.... il y a en effet des algo. plus efficace que la méthodes
des trapèzes !

2 Résolutions d’E.D. d’ordre 1

2.1 Point de terminologie et de forme

Terminologie : Une équation différentielle comme nous les connaissons est une Equation Différentielle
Ordinaire, en anglais Ordinary Differential Equation donc ode.

Par opposition, pour les fonctions à plusieurs variables les équations avec des dérivées partielles
différentes seront appelées Equations aux Dérivées partielles (E.D.P. et en anglais PDE).

Forme : Une équation différentielle du premier ordre normalisée peut toujours s’écrire sous la
forme :

y′ = f(x, y) c’est-à-dire aussi y′(x) = f(x, y(x))

Par exemple y′(x) = 2x sin(y(x)) + 1 s’écrira y′ = f(x, y) avec f(u, v) = 2u sin(v) + 1.
Parfois la fonction f ne dépend que de y, par exemple y′(x) = 2.y(x)2. On dit que l’équation

est autonome : ces équations ont des propriétés particulières. Mais :

Contrainte en SciLab :�



�
	Pour définir une E.D. en SciLab la fonction f doit toujours être déclarée avec les deux

variables x et y (dans cet ordre : variable puis fonction) même si elle ne dépend que de y.

Par exemple, si on veut résoudre y′(x) = 2x sin(y(x)) + 1, on déclarera :
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function yprime=f(x,y)
yprime=2*x*sin(y)+1 // le nom yprime n’est qu’un choix de nom de variable !

endfunction

Et si on veut résoudre y′(x) = 2.y(x)2 :

function yprime=g(x,y)
yprime=2*y^2 // ici x n’apparaı̂t pas mais il doit être mis comme argument de g

endfunction

2.2 L’appel de la commande ode de SciLab

Motivation : la résolution numérique d’un problème de Cauchy

Autrement dit on se donne (x0, y0) ∈ R2 (pour l’instant) et l’E.D. y′(x) = f(x, y) et on cherche
≪ la ≫ solution du problème de Cauchy associé par un algorithme d’approximation numérique.

Nous avons vu la méthode d’Euler qui est un algorithme très élémentaire. La fonction ode de
SciLab utilise des méthodes plus sophistiquées, dont nous reparlerons...

Pour cela on doit se donner aussi l’intervalle des x sur lequel on veut calculer des valeurs de la
solution approchée. D’où la nécessité de préciser :

Ce qu’on doit mettre en argument de ode

L’appel de la fonction ode nécessite l’entrée dans l’ordre de quatre arguments :
a) La valeur initiale y0,
b) L’abscisse initiale x0,
c) Les valeurs de x pour lesquels on veut calculer la solution approchée,
d) La fonction f définie suivant les recommandations du § 2.1.

Avec tout cela :

y=ode(y0,x0,x,f)

affecte à y la liste des valeurs de la fonction solution approchée de l’équation différentielle pour les
valeurs de x données.

Exemple très simple

y0=1;
x0=0;
x=0:0.1:10
deff(’yprime=f(x,y)’,’yprime=-y’)
y=ode(y0,x0,x,f)
clf()
plot2d(x,y)

Si on trace la solution théorique via z=exp(-x) la superposition sera parfaite...

3 Comment transformer une E.D. d’ordre 2 en E.D. vecto-
rielle d’ordre 1

3.1 La méthode illustrée sur une E.D. Linéaire

Motivation :

On se donne une EDL du second ordre y′′(x) = a(x)y′(x) + b(x)y(x) + c(x). On va la ramener
à une E.D. du premier ordre mais à inconnue une fonction vectorielle.
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Intérêt ici : On pourra lui appliquer alors la commande ode qui, suivant la philosophie de
SciLab s’applique aussi à des fonctions vectorielles.

Intérêt mathématique plus général : On peut ramener toute la théorie des EDL d’ordre
quelconque à la théorie des E.D.L. d’ordre 1 dans le cadre vectoriel (cf. cours de maths de 2ème
année).

Définition de la dérivée d’une fonction de R dans R2 : coordonnées par coordonnées
Si f ∶ x↦ (f1(x), f2(x)), on définit f ′(x) = (f ′1(x), f

′

2(x)).

Retour à notre E.D. du second ordre :

On considère toujours l’E.D. y′′(x) = a(x)y′(x) + b(x)y(x) + c(x).
Idée : on pose Y (x) = (y(x), y′(x)). Avec la déf. précédente de la dérivée Y ′(x) = (y′(x), y′′(x)).

L’E.D. initiale est équivalente au système
⎧⎪⎪
⎨
⎪⎪⎩

y′(x) = y′(x) (oui c’est trivial)
y′′(x) = a(x)y′(x) + b(x)y(x) + c(x)

.

L’E.D. initiale peut donc s’écrire comme une équation du premier ordre pour la fonction x ↦
Y (x) sous la forme :

Y ′
(x) = F (x,Y (x)),

où en notant x ∈ R et Y = (Y1, Y2 ) ∈ R2, F ∶ (x,Y ) ↦ (Y2, a(x)Y2 + b(x)Y1 + c(x)).

3.2 Traduction en SciLab : exemple pour l’O.H.

N.B. On choisit, pour la commodité des applications à la physique, d’appeler plutôt t la variable
des fonctions.

On considère l’E.D. y′′(t) + ω2
0y(t) = 0. On peut la réécrire en posant Y (t) = (y(t), y′(t)) sous

la forme Y ′(t) = F (t, Y (t)) où pour t ∈ R et Y = (Y1, Y2) ∈ R2 :

F (t, Y ) = (Y2,−ω
2
0 .Y1).

Application en SciLab : on veut tracer la solution pour ω0 = 2, au problème de Cauchy posé
par cette E.D. y′′(t) + 4y(t) = 0 avec y(0) = 1 et y′(0) = 0. On utilise le script suivant :

clf()
function Yprim=F(t,Y);

Yprim(1)=Y(2)
Yprim(2)=-4*Y(1)

endfunction
t0=0
Y0=[1;0]// C.I. rentrées comme un vecteur vertical
t=0:0.01:10
Y=ode(Y0,t0,t,F) // Y est une matrice à 2 Lignes et length(x) colonnes
plot2d(x,Y(1,:))

3.3 Une leçon importante de l’exemple précédent�� ��Attentions aux vecteurs verticaux ou horizontaux

Fabrication d’un vecteur entrées par entrées

Par défaut si un vecteur u n’existe pas et qu’on rentre :

-->u(1)=12;
-->u(2)=3;
-->size(u)
ans=

2. 1.
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On a un vecteur à deux lignes et une colonne.�� ��Moralité : un vecteur fabriqué par cette méthode est vertical

Application à la fonction définie F définie au § 3.2

Cette fonction prend en entrée un vecteur Y qui peut indifféremment être vertical ou horizontal,
car les commandes Y(1) et Y(2) s’appliquent dans les deux cas. En revanche elle renvoie un vecteur
qui est vertical.�



�
	La variable de retour de ode est un tableau à deux lignes : avec en première ligne les

valeur de y et en seconde ligne les valeurs de y′

Retenir aussi :

La commande d’extraction d’une ligne (ou d’une colonne) dans un tableau :

-->A=[1,2,3;4,5,6]
A =

1. 2. 3.
4. 5. 6.

-->A(1,:)
ans =

1. 2. 3.

-->A(2,:)
ans =

4. 5. 6.
-->A(:,1)
ans =

1.
4.

3.4 Application au portrait de phase de l’O.H.

Rappel sur l’obtention de l’intégrale première de l’énergie :

A partir de l’E.D. donnée par la R.F.D. pour un oscillateur harmonique :

my′′(t) = −ky(t)

par multiplication des deux membres par y′(t), on obtient

my′(t)y′′(t) = −ky′(t)y(t)

qui équivaut à l’égalité :
d

dt
(

1
2
my′(t)2 +

1
2
ky(t)2) = 0

et finalement à la conservation de l’énergie : il existe une constante E telle que pour tout t

1
2
my′(t)2 +

1
2
ky(t)2 = E (†)

4



Une courbe dans l’espace des phases

Par déf. la courbe dans l’espace des phases correspondant à une solution de l’équation de l’O.H.
est la courbe paramétrée t↦ (y(t), y′(t)). Avec le résultat du § 3.2, son tracé est immédiat :

scf(1);
plot2d(Y(1,:),Y(2,:))

On obtient bien des ellipses comme prévus par (†). Mieux (cf. cours de physique) si on prend

comme variables (y(t),
y′(t)

ω0
) on obtient un cercle puisque :

1
2
ky2
+

1
2
m(y′)2 = E ⇔ y2

+ (
y′

ω0
)
2
=

2E

k
= C

ce qui se voit bien à condition de prendre des coordonnées en base orthonormées :

scf(2)
clf()
a=gca()//donnée axe
a.isoview="on"
plot2d(Y(1,:),Y(2,:)/(2))

Tout un portrait

Pour avoir tout un portrait de phase, on doit faire varier les C.I. Cf. T.P.
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