
Chapitre S1 : Introduction à Scilab et applications aux tracés

Une remarque introductive

Le logiciel SciLab a une syntaxe assez proche de Python en bien des points. Il y a aussi bien
des différences. Un avantage pour nous est l’aide en ligne très complète, une gestion plus légère
sans avoir à charger des bibliothèques, des fonctions mathématiques et graphiques.

L’aide s’obtient avec help ou help plot (sans parenthèses 1), si on veut de l’aide sur la
fonction plot. En outre sur les machines du lycée des fichiers d’aide sont à disposition. Ou-
vrir firefox et accéder à l’aide en ligne : http://192.168.numero_de_la_salle.1 Par exemple
http://192.168.18.1

Table des matières

1 Un paradigme : en Scilab tout est vecteur ou matrice... 2
1.1 Comment rentrer un vecteur ou une matrice ? . 2
1.2 Les réels sont des tableaux 1 × 1 : . 3
1.3 Les variables en mémoire : . 3
1.4 Pour accéder aux entrées d’un vecteur ou d’une matrice : 3
1.5 Ce qu’on ne pouvait pas faire avec une liste Python 3

2 Les opérations et fonctions sur les vecteurs 4
2.1 Les opérations usuelles sur les vecteurs et matrices . 4
2.2 Les fonctions usuelles opèrent sur les vecteurs : . 4
2.3 Un autre paradigme : le calcul numérique et le ε-machine 5

3 Définition et manipulations de fonctions en Scilab 5
3.1 La déclaration de fonction dans l’éditeur de texte . 5
3.2 Une autre possibilité de déclaration sur une ligne . 6

4 Au propos de l’affichage graphique 6
4.1 L’essentiel sur ce qui fait plot : affichage à partir de deux vecteurs 6
4.2 Premières options d’affichage . 6

4.2.1 Affichage par défaut : points noirs reliés par des segments noirs 6
4.2.2 Pour modifier : points séparés ou pas, couleurs.. 6

4.3 Pour tracer des graphes de fonctions . 7
4.3.1 Avec les deux vecteurs (le point de vue qui marche toujours) 7
4.3.2 Le second vecteur peut être calculé directement dans l’appel de plot 7
4.3.3 On peut remplacer le second vecteur par le nom de la fonction 7

4.4 Des fonctions particulières : les suites . 7
4.5 Pour tracer des courbes paramétrées planes . 8

4.5.1 Un premier exemple de tracé : . 8
4.5.2 Un enjeu pour les courbes paramétrées : savoir suivre la courbe 8

4.6 Commandes à connâıtre pour gérer les graphiques : . 8
4.6.1 Gestion des fenêtres des figures . 8
4.6.2 Gestion des axes et autres . 8
4.6.3 Numéros des couleurs . 9

5 Recherches de zéros de fonctions avec SciLab 9
5.1 Utilisation du mode graphique : xclick . 9
5.2 La fonction fsolve . 9

1. une différence avec Python

1

1 Un paradigme : en Scilab tout est vecteur ou matrice...

Le logiciel SciLab(pour Scientific Laboratory) a été développé par l’INRIA comme une alter-
native libre à Matlab. Or Matlab signifie Matrix Laboratory, donc ces deux logiciels font des
vecteurs et des matrices (tableaux) leurs objets de base.

1.1 Comment rentrer un vecteur ou une matrice ?

A la main :

Entre crochets [], dans une ligne les entrées sont séparées par des virgules, les lignes sont
séparées par des points virgules.

-->u=[1,2,3] // vecteur ligne
u =

1. 2. 3.

-->u=[1; 2;3] // vecteur colonne
u =

1.
2.
3.

-->A=[1,2,3; 4,5,6]
A =

1. 2. 3.
4. 5. 6.

Remarque : L’opération de transposition qui transforme les lignes en colonnes et inversement,
se note avec une prime. Par exemple :

-->u=[1,2,3]
u =

1. 2. 3.

-->u=u’
u =

1.
2.
3.

Plus automatique :

-->u=0:0.1:1 // de 0 à 1 avec un pas de 0.1
u =

0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.
-->u=linspace(0,1,11) // subdivision régulière à 11 points de l’intervalle [0,1]
u =

0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.

2

1.2 Les réels sont des tableaux 1 × 1 :

Par exemple que répond SciLab à :

-->x=2; // le point virgule empêche l’affichage
-->x==[2] // test d’égalité comme en Python

1.3 Les variables en mémoire :

Pour voir la liste des variables utilisées

La commande who ou mieux who_user donne la liste des variables en mémoire.

Pour effacer

-->u=2
-->clear(’u’)// vide le contenu de u
-->clear // efface toutes les variables (non protégées) que nous avons déclarées.

Remarque sur les variables prédéfinies et protégées :

On a déjà rencontré les variables mathématiques %e,%pi %i .
Elles sont toutes précédées d’un %. Ce signe % signifie que ces variables sont protégées i.e.

résistent à la commande clear.
La commande predef() permet de gérer ces variables prédéfinies, nous ne l’utiliserons pas

forcément.

1.4 Pour accéder aux entrées d’un vecteur ou d’une matrice :�
�

�
�

Attention deux différences avec Python :
● parenthèses et pas crochets,
● la numérotation commence à 1 et pas à 0.

Pour les tableaux, toujours indice Ligne puis indice Colonne (notation standard en math : LiCo).

-->A=[1,2,3;4,5,6]
A =

1. 2. 3.
4. 5. 6.

-->A(1,2)
ans =

2.

-->A(2,2)
ans =

1.5 Ce qu’on ne pouvait pas faire avec une liste Python�� ��On peut créer un vecteur u en définissant les u(n)

for n=1:50
u(n)=(-0.9)^n

end

3

2 Les opérations et fonctions sur les vecteurs

2.1 Les opérations usuelles sur les vecteurs et matrices

Les deux lois évidentes d’espace vectoriel

Pas de surprise pour + : ajoute entrée par entrée des vecteurs (resp. tableaux) de même taille.
Pas de surprise pour la multiplication par un scalaire notée *

Deux notions distinctes de multiplication entre vecteurs, matrices

a) La multiplication entrée par entrée entre deux vecteurs (tableaux) de même
taille se note .* attention : il y a un point avant l’étoile ! Par exemple :

->u=[1,2,3]
u =

1. 2. 3.

-->v=[-1,2,1]
v =

- 1. 2. 1.

-->u*v
!--error 10

Multiplication incohérente.
-->u.*v
ans =

- 1. 4. 3.

b) Le symbole * seul correspond à la multiplication des matrices que nous étudierons
en maths

Nous aurons besoin ici seulement de l’exemple de la multiplication à droite d’un tableau (ma-
trice) par un vecteur colonne :

Idée expliquée en 2 × 2 : à partir d’un tableau (
a b
c d

) et d’un vecteur colonne (
x
y
), on note :

(
a b
c d

)(
x1

x2
)

def
= (

ax1 + bx2

cx1 + dx2
).

Ceci permet p. ex. d’écrire le système
⎧⎪⎪
⎨
⎪⎪⎩

ax1 + bx2 = y1

cx1 + dx2 = y2
sous la forme (

a b
c d

)(
x1

x2
) = (

y1
y2
).

2.2 Les fonctions usuelles opèrent sur les vecteurs :�� ��Attention aux points à mettre devant les multiplications, divisions, puissances...

Parfois ce point n’est pas nécessaire, mais dans le doute mieux vaut le mettre ! Pas de . en
revanche pour appliquer sin, log etc...

->v=[1,2,3]; // le point virgule empêche l’affichage

-->v.^2
ans =

1. 4. 9.

4

-->u=[%pi,0, %pi/2]
u =

3.1415927 0. 1.5707963

-->sin(u)
ans =

1.225D-16 0. 1.

Eh oui SciLabfait du calcul numérique !

2.3 Un autre paradigme : le calcul numérique et le ε-machine

Comme vu au dernier exemple, en SciLab, sin(π) ne donne pas 0, mais 1.225D^-16. Pour tester
si quelque chose peut être considéré comme nul, on peut le comparer avec l’écart le plus petit entre
deux flottants 2, appelé ε-machine en informatique stocké dans la variable %eps en SciLab.

-->%eps
%eps =

2.220D-16

-->sin(%pi)<%eps
ans =
T

3 Définition et manipulations de fonctions en Scilab

3.1 La déclaration de fonction dans l’éditeur de texte

La syntaxe pour la définition de fonctions en SciLab est la suivante :

function y=MaFonction(paramètres); // ce point virgule là est obligatoire
instructions; // ceci est un commentaire
instructions; // les ; permettent d’éviter un affichage
y=...

endfunction

Par exemple :

function y=f(x);
y=sqrt(x.^2+1)

endfunction

Ensuite exécuter la fonction pour qu’elle soit utilisable dans le shell de SciLab.
N.B. Ma fonction f peut opérer sur un vecteur (ou un tableau) x et dans ce cas renverra y

vecteur (resp. tableau) de mêmes taille. S’il y a plusieurs variables arguments et plusieurs variables
de sortie, la syntaxe est :

function [x,y]=g(u,v);
x=u+v
y=u*v

endfunction

2. revoir le chapitre 6

5

3.2 Une autre possibilité de déclaration sur une ligne

-->deff(’y=f(x)’,’y=sqrt(x.^2+1)’)

On peut aussi appliquer la fonction à des couples, même avec cette façon de la définir :

-->deff(’[x,y]=g(u,v)’,[’x=u+v’,’y=u*v’])

C’est économique mais la syntaxe n’est pas forcément légère avec les quotes.

4 Au propos de l’affichage graphique

4.1 L’essentiel sur ce qui fait plot : affichage à partir de deux vecteurs�� ��Aveu : je n’ai pas compris toutes les différences plot/plot2d

En fait plot2d a plus d’options que plot, qui lui, permet d’écrire des scripts compatibles avec
MatLab ?

L’utilisation en est la même, tant qu’on ne modifie pas les options d’affichages !

Remarque préliminaire : Il existe plusieurs façons d’utiliser plot, qui font qu’il n’est pas
forcément facile de dégager d’emblée une logique commune. Je vais partir du point de vue qui me
semble le plus commode parce qu’il s’applique à des situations très générales.

L’essentiel : Comme vu au T.P. 6, il faut penser que la commande plot de SciLab
prend comme arguments deux vecteurs de même taille, disons x et y, place les points de
coordonnées (x(i),y(i)), les points successifs étant, par défaut, reliés par des segments.�� ��Ce point de vue permet de tracer beaucoup de choses : pas que des graphes de fonctions !

4.2 Premières options d’affichage

4.2.1 Affichage par défaut : points noirs reliés par des segments noirs

x=[0, 1,2];
y=[1,2,1];
plot(x,y)

4.2.2 Pour modifier : points séparés ou pas, couleurs..

a) Pour la commande plot : on rajoute comme arguments supplémentaires dans plot avec
des guillemets :
– Les couleurs simples : ”b”=blue, ”r”=red,”g”=green,”y”=jaune,”m”=magenta,”w”=white,
– Les formes de points : par défauts les points sont reliés, sinon, on met : ”.”,”+”,”o”,”x”,”*”.

x=0:0.1:%pi/2
y=sin(x)
plot(x,y,"r+") \\ points rouges (r) en forme de +, on pourrait mettre "g*", "yx" etc...

b) Pour la commande plot2d : on utilise plutôt les numéros des couleurs et des marques.
Ces numéros sont donnés dans des tableaux getcolor() et getmark(). La commande color()
donne aussi le numéro d’une couleur donnée par son nom :

-->color("red")
ans =

5.

6

Dans plot2d, les trois commandes suivantes sont équivalentes :

plot2d(x,y,5)
plot2d(x,y,color("red")
plot2d(x,y,style=[5])

Sachant que les marques (+,*,o) sont données par un nombre négatif, on peut l’équivalent
du a) avec plot2d :

x=0:0.1:%pi/2
y=sin(x)
plot2d(x,y,[5,-1])\\points rouges en forme de +.

4.3 Pour tracer des graphes de fonctions

4.3.1 Avec les deux vecteurs (le point de vue qui marche toujours)

clf; // pour clear figure : efface la figure courante
x=linspace(-%pi,+%pi,100);
y=x.^2+x+1
plot(x,y)

4.3.2 Le second vecteur peut être calculé directement dans l’appel de plot

Comme dit dans le titre, un script équivalent au précédent est :

clf; // pour clear figure : efface la figure courante
x=linspace(-%pi,+%pi,100);
plot(x,x.^2+x+1)

4.3.3 On peut remplacer le second vecteur par le nom de la fonction

Si on a définit une fonction f ∶ x↦ x2 + x + 1 en SciLab, on peut aussi tracer ainsi :

clf; // pour clear figure : efface la figure courante
x=linspace(-%pi,+%pi,100);
plot(x,f)

Autrement dit : quand le second argument de plot est une fonction et pas un vecteur, il
comprend qu’il doit tracer x,f(x).

4.4 Des fonctions particulières : les suites

On a vu plus haut que pour une suite définie explicitement, on peut utiliser une simple boucle
for

for n=1:50
u(n)=(-0.9)^n

end

Remarque : les opérations sur les vecteurs permettent de court-circuiter l’écriture de
la boucle for On peut ainsi définir u plutôt comme suit :

u=(-0.9)^(1:50)

On peut alors tracer sans surprise :

N=1:50
plot(N,u,"*r")

Mais, en fait, pour un vecteur ayant n entrées, le premier argument peut ici être enlevé :

7

�

�
	Par défaut, le premier argument de plot appliqué à un vecteur de longueur n sera le

vecteur 1 :n : c’est donc très pratique pour visualiser des suites.

for n=1:50
v(n)=sin(n)

end
plot(v,"*b")

4.5 Pour tracer des courbes paramétrées planes

Définition : Tracer une courbe paramétrée plane est tracer l’ensemble des points M(t) =
(x(t), y(t)) où t↦ x(t) et t↦ y(t)) sont des fonctions quelconques.�� ��L’essentiel : la variable t ne se voit pas sur la figure. On peut penser que c’est le temps.

4.5.1 Un premier exemple de tracé :

Par exemple le mouvement d’un mobileM(t) en fonction du temps t est défini par
⎧⎪⎪
⎨
⎪⎪⎩

x = cos(3t),
y = sin(3t)

:

mouvement circulaire uniforme.
Pour afficher la trajectoire avec plot (ou plot2d) :

t=linspace(0,2*%pi,100)
x=cos(3*t)
y=sin(3*t)
plot(x,y) �� ��Problème : on voit un ovale au lieu d’un cercle : voir § 4.6.2 ci-dessous

4.5.2 Un enjeu pour les courbes paramétrées : savoir suivre la courbe

● Propriétés de symétries : voir notes manuscrites
● Vecteurs tangents et asymptotes : voir notes manuscrites

4.6 Commandes à connâıtre pour gérer les graphiques :

4.6.1 Gestion des fenêtres des figures

Au premier appel d’un plot (ou autre), il y a création d’une fenêtre graphique, appelée Figure
0. �� ��Par défaut, les différentes figures vont se supposer sauf si :

On efface : avec clf() (clear figure) ;
On change de fenêtre : avec scf() (set current figure)

scf(1)// set current figure numéro de la figure
scf(0) // revient à la figure 0

4.6.2 Gestion des axes et autres

Le plus simple : en mode graphique�

�
	● Avec les boutons dans la fenêtre graphique : cadrage, zoom

● Avec le menu Edition de la fenêtre de la figure.

En terme de commandes :
Chaque fenêtre graphique est gérée comme un objet de type Figure. Pour la manipuler, on peut

utiliser la command gcf() pour get current figure. Pour les axes, on peut utiliser gca() pour get
current axes.

8

mafig=gcf()// les données de la figure courante sont stockées dans mafig
a=gca()// les données des axes...
a.isoview=’on’; // méthode qui agit sur a et met à la même échelle les deux axes�� ��Cette commande isoview peut être obtenue en cochant dans le menu Edition...

4.6.3 Numéros des couleurs

Pour beaucoup de commandes, il vaut mieux rentrer la couleur avec un numéro. Les numeros
et les noms des couleurs basiques se voient avec la commande getcolor(). On peut aussi rentrer
une couleur avec son numéro RGB : cherchez comment !

5 Recherches de zéros de fonctions avec SciLab

5.1 Utilisation du mode graphique : xclick

La commande xclick() met le programme en pause dans l’attente d’un appui sur un des
boutons de la souris à l’intérieur du cadre de la fenêtre graphique.

Au moment d’un click, elle renvoie la nature du clic (gauche, droit) et surtout les coordonnées
du points du clic : soit au total un vecteur formé de trois nombres.

Par exemple en déclarant u=xclick() et avec un clic droit sur le point de coordonnées (0.3,1.7),
après le clic, on aura u=[0, 0.3,1.7]

Cette commande est intéressante pour permettre de relever des coordonnées de points sur
lesquels on clique.

Un exemple : On cherche à résoudre graphiquement l’équation sin(x) = x/2.

5.2 La fonction fsolve

Pour trouver une solution approchée de l’équation g(x) = 0 au voisinage d’un point x0, on
utilise la commande suivante, qui stocke le résultat dans la variable x :

x=fsolve(x0,g)

Pour l’exemple précédente, après avoir repéré une valeur proche de 4 avec xclick, on peut donc
définir :

-->deff(’y=f(x)’,’y=sin(x)-x/2’)
--> x=fsolve(2,f)

On peut alors faire figurer le point sur la figure.

plot2d(x,f(x),-3)

9

