Chapitre S1 : Introduction a Scilab et applications aux tracés I

Une remarque introductive

Le logiciel SCILAB a une syntaxe assez proche de PYTHON en bien des points. Il y a aussi bien
des différences. Un avantage pour nous est 'aide en ligne tres complete, une gestion plus légere
sans avoir a charger des bibliotheques, des fonctions mathématiques et graphiques.

L’aide s’obtient avec help ou help plot (sans parenthéses?!), si on veut de l'aide sur la
fonction plot. En outre sur les machines du lycée des fichiers d’aide sont a disposition. Ou-
vrir firefox et accéder a ’aide en ligne : http://192.168 .numero_de_la_salle.l Par exemple
http://192.168.18.1

Table des matieres

1 Un paradigme : en Scilab tout est vecteur ou matrice... 2
1.1 Comment rentrer un vecteur ou une matrice? 2
1.2 Lesréels sont des tableaux 1x1: 3
1.3 Les variables en mémoire : 3
1.4 Pour accéder aux entrées d’un vecteur ou d’'une matrice : 3
1.5 Ce qu’on ne pouvait pas faire avec une liste PyTHoON 3

2 Les opérations et fonctions sur les vecteurs 4
2.1 Les opérations usuelles sur les vecteurs et matrices. 4
2.2 Les fonctions usuelles operent sur les vecteurs : 4
2.3 Un autre paradigme : le calcul numérique et le e-machine 5

3 Définition et manipulations de fonctions en Scilab 5
3.1 La déclaration de fonction dans I’éditeur de texte 5
3.2 Une autre possibilité de déclaration sur une ligne 6

4 Au propos de l’affichage graphique 6
4.1 L’essentiel sur ce qui fait plot : affichage a partir de deux vecteurs. 6
4.2 Premieres options d’affichage L oo Lo 6

4.2.1 Affichage par défaut : points noirs reliés par des segments noirs 6
4.2.2 Pour modifier : points séparés ou pas, couleurs.. 0L 6
4.3 Pour tracer des graphes de fonctions L 7
4.3.1 Avec les deux vecteurs (le point de vue qui marche toujours) 7
4.3.2 Le second vecteur peut étre calculé directement dans ’appel de plot 7
4.3.3 On peut remplacer le second vecteur par le nom de la fonction 7
4.4 Des fonctions particulieres : les suites. L L L Lo 7
4.5 Pour tracer des courbes paramétrées planes o o . 8
4.5.1 Un premier exemple de tracé : 8
4.5.2 Un enjeu pour les courbes paramétrées : savoir suivre la courbe 8
4.6 Commandes a connaitre pour gérer les graphiques : 8
4.6.1 Gestion des fenétres des figures L Lo oL 8
4.6.2 Gestion des axes et autTes 8
4.6.3 Numéros des couleurs o v i i i 9

5 Recherches de zéros de fonctions avec SCILAB 9
5.1 Utilisation du mode graphique : xclick vt 9
5.2 Lafonction fsolve. 9

1. une différence avec PYTHON

1 Un paradigme : en Scilab tout est vecteur ou matrice...

Le logiciel SCILAB(pour Scientific Laboratory) a été développé par 'INRIA comme une alter-
native libre a MATLAB. Or MATLAB signifie Matriz Laboratory, donc ces deux logiciels font des
vecteurs et des matrices (tableaux) leurs objets de base.

1.1 Comment rentrer un vecteur ou une matrice ?
A la main :

Entre crochets [], dans une ligne les entrées sont séparées par des virgules, les lignes sont
séparées par des points virgules.

-—>u=[1,2,3] // vecteur ligne
u =

1. 2. 3.

-—>u=[1; 2;3] // vecteur colonne

u =
1.
2.
3.
-->A=[1,2,3; 4,5,6]
A =
1. 2. 3.
4. 5. 6.

Remarque : L’opération de transposition qui transforme les lignes en colonnes et inversement,
se note avec une prime. Par exemple :

-->u=[1,2,3]
u =
1 2. 3
——>u=u’
u =
1.
2.
3.

Plus automatique :

-->u=0:0.1:1 // de 0 & 1 avec un pas de 0.1
u =

0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.
-->u=linspace(0,1,11) // subdivision réguliére a 11 points de 1’intervalle [0,1]
u =

1.2 Les réels sont des tableaux 1x1 :
Par exemple que répond SCILAB a :

-->x=2; // le point virgule empé&che 1’affichage
-—>x==[2] // test d’égalité comme en Python

1.3 Les variables en mémoire :
Pour voir la liste des variables utilisées

La commande who ou mieux who_user donne la liste des variables en mémoire.

Pour effacer

-->u=2
-->clear(’u’)// vide le contenu de u
-->clear // efface toutes les variables (non protégées) que nous avons déclarées.

Remarque sur les variables prédéfinies et protégées :

On a déja rencontré les variables mathématiques %e,%pi %i .

Elles sont toutes précédées d'un %. Ce signe % signifie que ces variables sont protégées i.e.
résistent a la commande clear.

La commande predef () permet de gérer ces variables prédéfinies, nous ne l'utiliserons pas
forcément.

1.4 Pour accéder aux entrées d’un vecteur ou d’une matrice :

Attention deux différences avec PYTHON :
e parentheses et pas crochets,
e la numérotation commence a 1 et pas a 0.

Pour les tableaux, toujours indice Ligne puis indice Colonne (notation standard en math : LiCo).

-—>A=[1,2,3;4,5,6]

A =
1. 2. 3.
4. 5. 6.
-—>A(1,2)
ans =
2.
-—>A(2,2)
ans =

1.5 Ce qu’on ne pouvait pas faire avec une liste PYTHON

[On peut créer un vecteur u en définissant les u(n)]

for n=1:50
u(n)=(-0.9)"n
end

2 Les opérations et fonctions sur les vecteurs

2.1 Les opérations usuelles sur les vecteurs et matrices

Les deux lois évidentes d’espace vectoriel
Pas de surprise pour + : ajoute entrée par entrée des vecteurs (resp. tableaux) de méme taille.
Pas de surprise pour la multiplication par un scalaire notée *

Deux notions distinctes de multiplication entre vecteurs, matrices

a) La multiplication entrée par entrée entre deux vecteurs (tableaux) de méme
taille se note .* attention : il y a un point avant 1’étoile! Par exemple :

->u=[1,2,3]
u =
1. 2. 3.
-—>v=[-1,2,1]
v =
-1 2. 1
——>u*v
!-—error 10
Multiplication incohérente.
—=>u.*v
ans =
-1 4. 3

b) Le symbole * seul correspond a la multiplication des matrices que nous étudierons
en maths
Nous aurons besoin ici seulement de I'exemple de la multiplication & droite d’un tableau (ma-
trice) par un vecteur colonne :
. D s . b
Idée expliquée en 2 x 2 : a partir d'un tableau (CCL d et d’un vecteur colonne (z), on note :

a b\(x1)des [axy +bxa
¢ dJ\za)] \cxy+dza]

. e N azy +bxry =1 a b\(x Y1
Ceci permet p. ex. d’écrire le systéme sous la forme ¢ d = .

cxy +dre =Y T2 Y2

2.2 Les fonctions usuelles opérent sur les vecteurs :

[Attention aux points a mettre devant les multiplications, divisions, puissances...]

Parfois ce point n’est pas nécessaire, mais dans le doute mieux vaut le mettre! Pas de . en
revanche pour appliquer sin, log etc...

->v=[1,2,3]; // le point virgule empéche 1l’affichage

-—>v. 2
ans =

-->u=[%pi,0, %pi/2]

u =
3.1415927 0. 1.5707963
-->sin(u)
ans =
1.225D-16 0. 1.

Eh oui SciLABfait du calcul numérique!

2.3 Un autre paradigme : le calcul numérique et le e-machine

Comme vu au dernier exemple, en SCILAB, sin(7) ne donne pas 0, mais 1.225D~-16. Pour tester
si quelque chose peut étre considéré comme nul, on peut le comparer avec I’écart le plus petit entre
deux flottants 2, appelé e-machine en informatique stocké dans la variable %eps en SCILAB.

-=>%eps
heps =

2.220D-16

-->sin(%pi)<¥eps
ans =
T

3 Définition et manipulations de fonctions en Scilab

3.1 La déclaration de fonction dans I’éditeur de texte

La syntaxe pour la définition de fonctions en SCILAB est la suivante :

function y=MaFonction(paramétres); // ce point virgule la est obligatoire
instructions; // ceci est un commentaire
instructions; // les ; permettent d’éviter un affichage

y=...
endfunction

Par exemple :

function y=f(x);
y=sqrt(x.” 2+1)
endfunction

Ensuite exécuter la fonction pour qu’elle soit utilisable dans le shell de SCILAB.

N.B. Ma fonction f peut opérer sur un vecteur (ou un tableau) x et dans ce cas renverra y
vecteur (resp. tableau) de mémes taille. S’il y a plusieurs variables arguments et plusieurs variables
de sortie, la syntaxe est :

function [x,yl=g(u,v);
X=u+v
y=u*v

endfunction

2. revoir le chapitre 6

3.2 Une autre possibilité de déclaration sur une ligne

-—>deff (Py=£f(x)’,’y=sqrt(x."2+1)’)

On peut aussi appliquer la fonction a des couples, méme avec cette fagon de la définir :
-—>deff (’ [x,yl=g(u,v)’, [’x=u+v’,’y=u*xv’])

C’est économique mais la syntaxe n’est pas forcément légere avec les quotes.

4 Au propos de P’affichage graphique

4.1 L’essentiel sur ce qui fait plot : affichage a partir de deux vecteurs

[Aveu : je n’ai pas compris toutes les différences plot/plot2d]

En fait plot2d a plus d’options que plot, qui lui, permet d’écrire des scripts compatibles avec
MATLAB?
L’utilisation en est la méme, tant qu’on ne modifie pas les options d’affichages!

Remarque préliminaire : 1[I existe plusieurs facons d’utiliser plot, qui font qu’il n’est pas
forcément facile de dégager d’emblée une logique commune. Je vais partir du point de vue qui me
semble le plus commode parce qu’il s’applique & des situations trés générales.

L’essentiel : Comme vu au T.P. 6, il faut penser que la commande plot de SCILAB
prend comme arguments deux vecteurs de méme taille, disons x et y, place les points de
coordonnées (x(i),y(i)), les points successifs étant, par défaut, reliés par des segments.

[Ce point de vue permet de tracer beaucoup de choses : pas que des graphes de fonctions !]

4.2 Premieres options d’affichage
4.2.1 Affichage par défaut : points noirs reliés par des segments noirs

x=[0, 1,2];
y=[1,2,1]1;
plot(x,y)

4.2.2 Pour modifier : points séparés ou pas, couleurs..

a) Pour la commande plot : on rajoute comme arguments supplémentaires dans plot avec
des guillemets :

— Les couleurs simples : ”b”=blue, "r”=red,” g” =green,” y” =jaune,” m” =magenta,” w”’ =white,

— Les formes de points : par défauts les points sont reliés, sinon, on met : 7.7, +" 70" ”x” [*”.

x=0:0.1:%pi/2
y=sin(x)

plot(x,y,"r+") \\ points rouges (r) en forme de +, on pourrait mettre "g*", "yx"

b) Pour la commande plot2d : on utilise plutdt les numéros des couleurs et des marques.

Ces numéros sont donnés dans des tableaux getcolor() et getmark (). La commande color ()
donne aussi le numéro d’'une couleur donnée par son nom :

-->color("red")
ans =

etc...

Dans plot2d, les trois commandes suivantes sont équivalentes :

plot2d(x,y,5)
plot2d(x,y,color("red")
plot2d(x,y,style=[5])

Sachant que les marques (4,*,0) sont données par un nombre négatif, on peut I’équivalent
du a) avec plot2d :

x=0:0.1:%pi/2
y=sin(x)
plot2d(x,y, [5,-1]1)\\points rouges en forme de +.

4.3 Pour tracer des graphes de fonctions

4.3.1 Avec les deux vecteurs (le point de vue qui marche toujours)

clf; // pour clear figure : efface la figure courante
x=linspace(-%pi,+/kpi, 100);

y=x."2+x+1

plot(x,y)

4.3.2 Le second vecteur peut étre calculé directement dans ’appel de plot

Comme dit dans le titre, un script équivalent au précédent est :

clf; // pour clear figure : efface la figure courante
x=linspace(-%pi,+%pi, 100);
plot(x,x. 2+x+1)

4.3.3 On peut remplacer le second vecteur par le nom de la fonction

2

Si on a définit une fonction f : x » z°+ x + 1 en SCILAB, on peut aussi tracer ainsi :

clf; // pour clear figure : efface la figure courante
x=linspace(-%pi,+%pi, 100);
plot(x,f)

Autrement dit : quand le second argument de plot est une fonction et pas un vecteur, il
comprend qu’il doit tracer x,f (x).

4.4 Des fonctions particulieres : les suites

On a vu plus haut que pour une suite définie explicitement, on peut utiliser une simple boucle
for

for n=1:50
u(n)=(-0.9)"n
end

Remarque : les opérations sur les vecteurs permettent de court-circuiter ’écriture de
la boucle for On peut ainsi définir u plutot comme suit :

u=(-0.9)"(1:50)
On peut alors tracer sans surprise :

N=1:50
plot (N,u,"*r")

Mais, en fait, pour un vecteur ayant n entrées, le premier argument peut ici étre enlevé :

Par défaut, le premier argument de plot appliqué a un vecteur de longueur n sera le
vecteur 1 :n : c’est donc tres pratique pour visualiser des suites.

for n=1:50
v(n)=sin(n)

end

plot(v,"*b")

4.5 Pour tracer des courbes paramétrées planes

Définition : Tracer une courbe paramétrée plane est tracer ensemble des points M(t) =
(x(t),y(t)) ou t — x(t) et t » y(t)) sont des fonctions quelconques.

[L’essentiel : la variable t ne se voit pas sur la figure. On peut penser que c’est le temps.]

4.5.1 Un premier exemple de tracé :

T = cos(3t
Par exemple le mouvement d’un mobile M (¢) en fonction du temps ¢ est défini par { . ((375))’

y = sin
mouvement circulaire uniforme.

Pour afficher la trajectoire avec plot (ou plot2d) :

t=1linspace(0,2%%pi,100)
x=cos (3*t)

y=sin(3%t)

plot(x,y)

[Probléme : on voit un ovale au lieu d’un cercle : voir § 4.6.2 ci—dessous]

4.5.2 Un enjeu pour les courbes paramétrées : savoir suivre la courbe

e Propriétés de symétries : voir notes manuscrites
e Vecteurs tangents et asymptotes : voir notes manuscrites

4.6 Commandes a connaitre pour gérer les graphiques :
4.6.1 Gestion des fenétres des figures

Au premier appel d’'un plot (ou autre), il y a création d’une fenétre graphique, appelée Figure
0.

(Par défaut, les différentes figures vont se supposer sauf si :]

On efface : avec c1£() (clear figure);
On change de fenétre : avec scf() (set current figure)

scf(1)// set current figure numéro de la figure
scf(0) // revient a la figure O

4.6.2 Gestion des axes et autres

Le plus simple : en mode graphique

e Avec les boutons dans la fenétre graphique : cadrage, zoom
e Avec le menu Edition de la fenétre de la figure.

En terme de commandes :

Chaque fenétre graphique est gérée comme un objet de type Figure. Pour la manipuler, on peut
utiliser la command gcf () pour get current figure. Pour les axes, on peut utiliser gca() pour get
current azes.

mafig=gcf()// les données de la figure courante sont stockées dans mafig
a=gca()// 1les données des axes...
a.isoview=’on’; // méthode qui agit sur a et met & la méme échelle les deux axes

[Cette commande isoview peut étre obtenue en cochant dans le menu Edition...]

4.6.3 Numeéros des couleurs

Pour beaucoup de commandes, il vaut mieux rentrer la couleur avec un numéro. Les numeros
et les noms des couleurs basiques se voient avec la commande getcolor(). On peut aussi rentrer
une couleur avec son numéro RGB : cherchez comment !

5 Recherches de zéros de fonctions avec SCILAB

5.1 Utilisation du mode graphique : xclick

La commande xclick() met le programme en pause dans l'attente d’un appui sur un des
boutons de la souris & 'intérieur du cadre de la fenétre graphique.

Au moment d’un click, elle renvoie la nature du clic (gauche, droit) et surtout les coordonnées
du points du clic : soit au total un vecteur formé de trois nombres.

Par exemple en déclarant u=xclick() et avec un clic droit sur le point de coordonnées (0.3,1.7),
apres le clic, on aura u=[0, 0.3,1.7]

Cette commande est intéressante pour permettre de relever des coordonnées de points sur
lesquels on clique.

Un exemple : On cherche & résoudre graphiquement I’équation sin(x) = z/2.

5.2 La fonction fsolve

Pour trouver une solution approchée de 1’équation g(z) = 0 au voisinage d’un point zg, on
utilise la commande suivante, qui stocke le résultat dans la variable x :

x=fsolve(x0,g)

Pour I'exemple précédente, apres avoir repéré une valeur proche de 4 avec xclick, on peut donc
définir :

-—>deff (’y=£f(x)’,’y=sin(x)-x/2’)
--> x=fsolve(2,f)

On peut alors faire figurer le point sur la figure.

plot2d(x,f(x),-3)

