
Concours blanc MPSI Mardi 19 Mai 2015

Informatique pour tous : solution

Exercice :

a) Pour une fonction f ∈ C([0, x],R) la méthode des rectangles (à gauche) consiste à considérer
la suite (Sn) où :

Sn(f) =
x

n

n−1

∑
i=0

f (
ix

n
) .

Pour f de l’énoncé, on programme le calcul de Sn(f) à l’aide d’une boucle, par exemple
comme suit :

def erfR(x,n):

S=0

p=x/n

for i in range(n):

S=S+np.exp(-(i*p)**2)

return p*S

ou avec un accumulateur pour les i*p :

def erfR(x,n):

S=0

p=x/n

acc=0

for i in range(n):

S=S+np.exp(-(acc)**2)

acc=acc+p

return p*S

N.B. L’utilisation de np.exp, autrement dit de la fonction exp de numpy sera utile pour la
suite, mais à ce stade on pourrait aussi utiliser celle du module math.

b) Avec les mêmes hypothèses, la méthode des trapèzes consiste à considérer la suite (Tn) où :

Tn(f) =
x

n
(
f(0)

2
+

n−1

∑
i=1

f (
i.x

n
) +

f(x)

2
) .

On a séparé les deux termes extrêmes qui n’interviennent que dans un trapèze. On peut
donc définir :

def erfT(x,n):

p=x/n

S=(1+np.exp(-x**2))/2 # contribution des valeurs extremales

for k in range(1,n):

S = S + np.exp(-(k*p)**2)

return p*S

c) L’objet x créé par np.linspace est un np.array : tableau numpy. Il en est de même pour
y qui est un tableau de même longueur que x et contient les images de chaque entrée de x

par notre fonction.

Remarque : Les opérations +,x,**2 s’appliquent entrée par entrée à ces tableaux. Pour
ce qui est de la fonction exp, la fonction np.exp s’appliquera aussi entrée par entrée à un
tel tableau. Celle du module math ne conviendrait pas.

d) Par rapport à la formule du b), on change un peu de point de vue. Maintenant, on va sommer
les aires de trapèzes une par une et stocker à chaque étape la valeur de la somme.

def erfG(x,n):

pas=x/n # le pas

X=[0] # initialisation du tableau des abscisses

Y=[0] # initialisation du tableau des ordonnées.

xcourant=0

ycourant=0

for k in range(0,n):

xsuivant=xcourant+pas

ycourant=ycourant+pas*(np.exp(-xcourant**2)+np.exp(-xsuivant**2))/2

1

on a rajouté à ycourant l’aire du trapèze dont les bases sont d’abscisse

#xcourant et xsuivant.

xcourant=xsuivant

X.append(xcourant)

Y.append(ycourant)

plt.clf()

plt.plot(X,Y)

plt.show() # l’affichage

return Y[-1] # la valeur finale

Problème
Question 1.

def plusBas(tab):

xmin=tab[0][0]

ymin=tab[1][0]

j=0

for i in range(len(tab[0])):

if tab[1][i]<ymin :

j=i

xmin=tab[0][i]

ymin=tab[1][i]

elif tab[1][i]==ymin:

if tab[0][i]<xmin:

j=i

xmin=tab[0][i]

ymin=tab[1][i]

return j

Question 2. Le test d’orientation donne +1 pour i = 7, j = 3, k = 4.
Il donne −1 pour i = 8, j = 9, k = 10.

Question 3.

def orient(tab,i,j,k):

pi=np.array([tab[0][i],tab[1][i]])

pj=np.array([tab[0][j],tab[1][j]])

pk=np.array([tab[0][k],tab[1][k]])

vec1=pj-pi

vec2=pk-pi

det=vec1[0]*vec2[1]-vec1[1]*vec2[0]

if det>0:

return 1

elif det==0:

return 0

else :

return -1

Question 4.
— réflexivité : soit j ≠ i, par déf. orient(tab,i, j, j) = 0 a fortiori orient(tab,i, j, j) ≤ 0 donc

pj ⪯ pj .
— Antisymétrie : soit j, k ≠ i, tels que pj ⪯ pk et pk ⪯ pj . Alors det(ÐÐ→pipj ,

ÐÐ→pipk) ≤ 0 et
det(ÐÐ→pipk,

ÐÐ→pipj) ≤ 0
Or det(ÐÐ→pipj ,

ÐÐ→pipk) = −det(ÐÐ→pipk,
ÐÐ→pipj) donc ici det(ÐÐ→pipk,

ÐÐ→pipj) = 0.
Ceci signifie que les points pi, pj , pk sont alignés. Or par l’hypothèse de position générale
de l’énoncé, ceci signifie que deux d’entre eux sont confondus. Enfin comme pj et pk sont
distincts de pi on conclut que pj = pk.

2

— transitivité : soit j, k, l ≠ i, tels que pj ⪯ pk et pk ⪯ pl.
On a donc det(ÐÐ→pipj ,

ÐÐ→pipk) ≤ 0 et det(ÐÐ→pipk
ÐÐ→pipl) ≤ 0.

Attention : sans hypothèse particulière sur pi on ne pourrait rien conclure comme le
montre le dessin suivant :

Dans ce dessin, pour la relation ⪯ associée à pi, on a bien : pj ⪯ pk (on tourne dans le sens
inverse-trigo de pj à pk) de même pk ⪯ pl mais on n’a pas pj ⪯ pl.

La raison en est qu’en considérant les représentants dans [−π,π] des angles orientés ̂
(ÐÐ→pipj ,

ÐÐ→pipk) ≡

θ1 ∈ [−π,0], ̂
(ÐÐ→pipk,

ÐÐ→pipl) ≡ θ2 ∈ [−π,0], on a θ1 + θ2 < −π.
Mais ici, un tel phénomène ne peut pas se produire car :
● Pour le premier point pi choisi : il est par déf. en bas à gauche du nuage de points. Donc
tous les points pj , pk, pk sont dans le demi-plan (fermé) délimité par la droite horizontale
passant par pi.
● Pour les autres point pi insérés : si pr est le point inséré avant pi alors par construction
de pi tous les points pj ∈ P ∖ {pi, pr} seront dans le demi plan à gauche de (prpi).

— Totalité : soit j, k ≠ i. Alors si det(ÐÐ→pipj ,
ÐÐ→pipk) ≤ 0, on a pj ⪯ pk, sinon det(ÐÐ→pipj ,

ÐÐ→pipk) ≥ 0 et
det(ÐÐ→pipk,

ÐÐ→pipj) ≤ 0 et donc pk ⪯ pj .

Question 5.

def prochainPoint(tab,i):

if i==0:

temoin=1

else:

temoin=0

n=len(tab[0])# le nombre d’entrées dans une ligne

for j in range(n):

if j!=i:

if orient(tab,i,temoin,j)<0:

temoin=j

return temoin

N.B. La distinction de cas au départ pour l’initialisation de témoin est nécessaire car sinon,
pour i et témoin égaux, on aurait toujours orient(tab,i,temoin,j)=0.

Question 6. On a i=10 par hypothèse. Ainsi on commence avec temoin=0 ce qui signifie qu’on va
considérer au départ les orientations de (ÐÐÐ→p10p0,

ÐÐÐ→p10pj).
● Quand j=0, orient(tab,i,temoin,j)<0 a la valeur False car det(ÐÐÐ→p10p0,

ÐÐÐ→p10p0) = 0.

● Quand j=1, orient(tab,i,temoin,j)<0 a la valeur True car det(ÐÐÐ→p10p0,
ÐÐÐ→p10p1) < 0.

Donc changement de témoin : temoin=1 .

● Quand j=2, orient(tab,i,temoin,j)<0 a la valeur True car det(ÐÐÐ→p10p1,
ÐÐÐ→p10p2) < 0.

Donc changement de témoin : temoin=2 .

● pour j=3,4, on a det(ÐÐÐ→p10p2,
ÐÐÐ→p10pj) > 0. Pas de changement de témoin.

● pour j=5, on a det(ÐÐÐ→p10p2,
ÐÐÐ→p10p5) < 0.

3

Donc changement de témoin : temoin=5 .

● pour tous les j supérieurs ou égaux à 6, on a det(ÐÐÐ→p10p5,
ÐÐÐ→p10pj) ≥ 0.

Il n’y a plus de changement de témoin. La fonction renvoie donc 5.

Question 7.

def convJarvis(tab,n):

pointInitial=plusBas(tab,n)

L=[]

pointcourant=pointInitial

while True:

L.append(pointcourant)

pointcourant=prochainPoint(tab,n,pointcourant)

if pointcourant==pointInitial:

return L

Question 8. Comme la fonction finale convJarvis appelle les fonctions plusBas et prochainPoint,
on examine la complexité de ces deux fonctions :

● Dans plusBas, la boucle for fait n tours de boucle. A chaque tour de boucle le nombre
d’opérations est majoré par 6 (3 test booléens, 3 affectations), en tout cas indépendant de n.

Ainsi la complexité de la fonction plusBas est en O(n) (et en fait inférieure à 6n).
(On n’a pas compté le calcul de len(tabl[0]) dont on ne connâıt la complexité que si on sait

comment cette donnée est codée, mais de toute façon cette complexité n’est pas plus que linéaire.)

● La fonction orient est de complexité constante indépendante de la longueur de tab i.e. en
O(1).

● Dans prochainPoint on a encore une seule boucle for avec n tours de boucles et un nombre
majoré par une constante d’opérations à chaque tour de boucles donc prochainPoint est en O(n).

● Enfin dans convJarvis on a donc :
— Un appel à plusBas en O(n),
— une boucle while qui fait exactement m tours de boucles (où m est le nombre de points du

bord de conv(C)).
— à chaque tour de boucle : un appel à prochainPoint en O(n) et 2 autres opérations (test

booléen et ajout dans une liste) ; donc une complexité encore en O(n) à chaque tour.
Au total la boucle coûte O(nm) opérations et donc :

la fonction convJarvis a une complexité en O(mn) +O(n) = O(mn) .

4

