
Jo�re / Daudet � MPSI Concours blanc 2016

Concours blanc IPT

Mardi 05 mai 2016

Le sujet est composé de 4 pages. Les calculatrices sont interdites.La correction tiendra fondamentalement compte de
la qualité de la rédaction et de la présentation.

Si le candidat repère ce qui lui semble être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en
expliquant les raisons des initiatives qu'il a été amené à prendre.

Implémentation

Dans ce sujet, on adoptera la syntaxe du langage Python.

La complexité d'une fonction Python proc de paramètres p1, . . . , pk est dé�nie comme le nombre maximal d'opéra-
tions élémentaires exécutées par proc pour ces paramètres.

On rappelle qu'on dispose des opérations suivantes, dont on supposera qu'elles ont toutes une complexité constante
(les listes Python étant des tableaux redimensionnables) :

• [] crée une liste vide ;

• si L est une liste, len(L) renvoie la longueur de la liste L ;

• si L est une liste et 0 6 i 6 len(L)− 1, L[i] renvoie le i-ième élément de L ;

• si L est une liste, e une expression et 0 6 i 6 len(L)− 1, L[i] = e a�ecte le i-ième élément de L à e ;

• si L est une liste, L.pop() renvoie la valeur du dernier élément de la liste et l'élimine de la liste ;

• si L est une liste et e une expression, L.append(e) ajoute la valeur de e à la �n de la liste L ;

• True et False sont les deux valeurs booléennes vrai et faux.

Le candidat reste libre d'utiliser d'autres fonctions, pourvu qu'elles existent et qu'elles soient clairement spéci�ées. Par
contre, on ne pourra faire aucune hypothèse de complexité sur ces autres fonctions et on ne pourra donc

pas les utiliser dans les questions pour lesquelles on attend une complexité donnée.

En�n, le code écrit devra être sûr (pas d'accès invalide à une liste, pas de division par zéro, et le programme ter-
mine, notamment) pour toutes valeurs des paramètres véri�ant les conditions données dans l'énoncé. Pour toute autre
valeur des paramètres, le comportement du code proposé n'aura aucune importance et il n'en sera pas tenu compte dans
la notation.

Points �xes d'applications sur des ensembles �nis

Dans tout le problème, on s'intéresse aux points �xes des applications f : E → E, où E est un ensemble �ni. Le calcul
e�ectif et e�cace des points �xes de telles applications est un problème récurrent en informatique (transformation d'au-
tomates, véri�cation automatique de programmes, algorithmique des graphes, etc.), et admet di�érentes approches selon
la structure de E et les propriétés de f . On considèrera ici le cas d'un ensemble de la forme En = {0, 1, . . . , n− 1}.

On représentera une application f : En → En par une liste Python L de longueur n, autrement dit f(x) = L[x]

pour tout x tel que 0 6 x 6 n− 1.

Ainsi l'application f0 qui à x ∈ E10 associe 2x+ 1modulo 10 est-elle représentée par la liste Python L suivante :

i 0 1 2 3 4 5 6 7 8 9
t[i] 1 3 5 7 9 1 3 5 7 9

Pour lever toute ambiguité, cette liste serait créée avec l'instruction L = [1,3,5,7,9,1,3,5,7,9].



Jo�re / Daudet � MPSI Concours blanc 2016

Partie I � Échau�ement

I Question 1 Quelle application est représentée par la liste [1, 1, 1, 1] ? Aucune justi�cation n'est demandée.

I Question 2 Écrire une fonction Python constante(a,n) qui prend en argument un entier n et un entier a ∈ En et

renvoie la liste représentant l'application constante

{
En → En

x 7→ a.

I Question 3

a. Écrire une fonction Python max(L) qui prend en argument une liste L d'entiers, non nécessairement triée (c'est-à-
dire que les entiers peuvent �gurer dans la liste dans n'importe quel ordre), et renvoie le maximum des éléments de L.

b. Écrire une fonction Python recherche_dichotomique(a,Lt) qui prend en argument un entier a et une liste triée
d'entiers Lt (c'est-à-dire que les entiers sont rangés de manière croissante, comme par exemple [1,3,4,6,7]), et
renvoie True si l'élément a est dans la liste Lt et False sinon, en utilisant l'algorithme de recherche dichotomique.
Donner sans démonstration la complexité de cet algorithme.

Ces fonctions existent déjà en Python mais on demande de les reprogrammer.

Partie II � Recherche de point �xe : cas général

On rappelle que x est un point �xe de l'application f si et seulement si f(x) = x.

I Question 4 Écrire une fonction Python admet_point_fixe(L) qui prend en argument une liste L et renvoie True si
l'application f : En → En représentée par L admet un point �xe, False sinon (n est donc ici la longueur de L). Par
exemple, admet_point_fixe devra renvoyer True pour la liste donnée en introduction, puisque 9 est un point �xe de
l'application f0 qui à x associe 2x+ 1modulo 10.

I Question 5 Écrire une fonction Python nb_points_fixes(L) qui prend en argument une liste L et renvoie le nombre
de points �xes de l'application f : En → En représentée par L (n est donc ici la longueur de L). Par exemple,
nb_point_fixes devra renvoyer 1 pour la liste donnée en introduction, puisque 9 est le seul point �xe de f0.

Dans la suite, on note fk l'itérée k-ième de f , autrement dit l'application fk :


En → En

x 7→ f(f(. . . f︸ ︷︷ ︸
k fois

(x)) . . . )

I Question 6 Écrire une fonction Python itere(L,x,k) qui prend en premier argument une liste L représentant une
fonction f : En → En (n est donc ici la longueur de L), en deuxième et troisième arguments des entiers x, k de En, et
qui renvoie fk(x).

I Question 7 Écrire une fonction Python nb_points_fixes_iteres(L,k) qui prend en premier argument une liste L

représentant une application f : En → En (n est donc ici la longueur de L), en deuxième argument un entier k > 0, et
qui renvoie le nombre de points �xes de fk.

Un élément z ∈ En est dit attracteur principal de f : En → En lorsque z est un point �xe de f et que pour tout x ∈ En,
il existe un entier k > 0 tel que fk(x) = z. Lorsque c'est le cas, on admet que pour tout x ∈ En, on a fn(x) = z (ce qui
se montre facilement à l'aide du principe des tiroirs).

Pour illustrer cette notion : la fonction f1 représentée par la liste ci-dessous admet 2 comme attracteur principal. Il n'est
pas demandé de le montrer.

i 0 1 2 3 4 5 6
L[i] 5 5 2 2 0 2 2

En revanche, on notera que la fonction f0 donnée en introduction n'admet pas d'attracteur principal puisque fk
0 (0) 6= 9

quel que soit l'entier k > 0.



Jo�re / Daudet � MPSI Concours blanc 2016

I Question 8 Écrire une fonction Python admet_attracteur_principal(L) qui prend en argument une liste L et
renvoie True si et seulement si l'application f : En → En représentée par L admet un attracteur principal, False sinon
(n est donc ici la longueur de L). On n'impose ici aucune complexité particulière.

On suppose aux questions 9 à 11 que f admet un attracteur principal. Le temps de convergence de f en x ∈ En est le
plus petit entier k > 0 tel que fk(x) soit un point �xe de f . Pour l'application f1 ci-dessus, le temps de convergence en
4 est 3. En e�et, f1(4) = 0, f2

1 (4) = 5, f3
1 (4) = 2, et 2 est un point �xe de f1. On note tc(f, x) le temps de convergence

de f en x.
On notera que, d'après la propriété admise, le temps de convergence de f en x est toujours inférieur à n.

I Question 9 Écrire une fonction Python temps_de_convergence(L,x) qui prend en premier argument une liste L

représentant une application f : En → En qui admet un attracteur principal (n est donc ici la longueur de L), en
deuxième argument un entier x de En, et renvoie le temps de convergence de f en x.

I Question 10 Écrire une fonction Python temps_de_convergence_max(L) qui prend en argument une liste L repré-
sentant une application f : En → En qui admet un attracteur principal, et renvoie max

x∈En

tc(f, x).

On impose dans cette question un temps de calcul au plus quadratique en la longueur n de la liste (i. e. en O(n2)). On
ne demande pas de démonstration de la complexité de la solution proposée, mais il est impératif d'expliquer clairement
le fonctionnement de votre fonction Python.

I Question 11 Reprendre la fonction temps_de_convergence_max(L) de sorte que sa complexité soit linéaire en la
longueur n de la liste (i. e. en O(n)). On ne demande pas de démonstration de la complexité de la solution proposée,
mais il est impératif d'expliquer clairement le fonctionnement de votre fonction Python.
À titre d'indication, on pourra au besoin créer des listes intermédiaires au cours du calcul.

Partie III � Recherche logarithmique dans un cas particulier

Toute fonction Python point_fixe(L) retournant un point �xe d'une fonction arbitraire est de complexité au mieux
linéaire en la longueur de L. Il existe des améliorations possibles de cette complexité lorsque la fonction considérée possède
certaines propriétés spéci�ques.

On se limitera ici au cas d'une application croissante de En dans En. On rappelle qu'une application f : En → En est
croissante si et seulement si pour tous x, y ∈ En tels que x 6 y, f(x) 6 f(y).

On admet que pour toute partie A ⊂ En, une application croissante de A dans A admet toujours un point �xe.

À titre d'exemple, l'application dont la liste et le graphe sont donnés ci-dessous est croissante. Elle a deux points �xes,
à savoir les entiers 5 et 7.

x

f(x)

i 0 1 2 3 4 5 6 7 8 9
t[i] 1 3 3 5 5 5 7 7 7 8

I Question 12 Écrire une fonction Python est_croissante(L) qui prend en argument une liste L et renvoie True si
l'application représentée par L est croissante, et False sinon. On impose un temps de calcul linéaire en la longueur n
de la liste. On ne demande pas de démonstration du fait que le temps de calcul de la solution proposée est linéaire.



Jo�re / Daudet � MPSI Concours blanc 2016

I Question 13 Écrire une fonction Python point_fixe(L) qui prend en argument une liste L représentant une appli-
cation croissante f : En → En (n est donc ici la longueur de L), et retourne un entier x ∈ En tel que f(x) = x. On
impose un temps de calcul logarithmique en la longueur n de la liste : pour ce faire, on pourra s'inspirer de la question
3.b. On ne demande pas ici de démonstration du fait que le temps de calcul de la solution proposée est logarithmique.

I Question 14 Démontrer que la fonction Python de la question 13 termine.

I Question 15 Justi�er que le temps de calcul est logarithmique en la longueur n de la liste.

�� ��Fin de l'épreuve


	Échauffement
	Recherche de point fixe : cas général
	Recherche logarithmique dans un cas particulier

