Joffre / Daudet — MPSI Concours blanc 2016

Concours blanc IPT
Mardi 05 mai 2016

Le sujet est composé de [d] pages. Les calculatrices sont interdites.La correction tiendra fondamentalement compte de
la qualité de la rédaction et de la présentation.

Si le candidat repére ce qui lui semble étre une erreur d’énoncé, il le signale sur sa copie et poursuit sa composition en
expliquant les raisons des initiatives qu’il a été amené a prendre.

Implémentation
Dans ce sujet, on adoptera la syntaxe du langage Python.

La complexité d’une fonction Python proc de paramétres pi,...,px est définie comme le nombre maximal d’opéra-
tions élémentaires exécutées par proc pour ces paramétres.

On rappelle qu’on dispose des opérations suivantes, dont on supposera qu’elles ont toutes une complexité constante
(les listes Python étant des tableaux redimensionnables) :

o [] crée une liste vide;

e si L est une liste, len(L) renvoie la longueur de la liste L;

e si L est une liste et 0 < ¢ <len(L) — 1, L[i] renvoie le i-iéme élément de L;

e si L est une liste, e une expression et 0 <14 < len(L) — 1, L[i] = e affecte le i-iéme élément de L a e;
e si L est une liste, L.pop() renvoie la valeur du dernier élément de la liste et ’élimine de la liste;

e si L est une liste et e une expression, L.append(e) ajoute la valeur de e a la fin de la liste L;

e True et False sont les deux valeurs booléennes vrai et fauz.

Le candidat reste libre d’utiliser d’autres fonctions, pourvu qu’elles existent et qu’elles soient clairement spécifiées. Par
contre, on ne pourra faire aucune hypothése de complexité sur ces autres fonctions et on ne pourra donc
pas les utiliser dans les questions pour lesquelles on attend une complexité donnée.

Enfin, le code écrit devra étre str (pas d’accés invalide & une liste, pas de division par zéro, et le programme ter-
mine, notamment) pour toutes valeurs des paramétres vérifiant les conditions données dans ’énoncé. Pour toute autre
valeur des paramétres, le comportement du code proposé n’aura aucune importance et il n’en sera pas tenu compte dans
la notation.

Points fixes d’applications sur des ensembles finis

Dans tout le probléme, on s’intéresse aux points fixes des applications f : £ — E, ou E est un ensemble fini. Le calcul
effectif et efficace des points fixes de telles applications est un probléme récurrent en informatique (transformation d’au-
tomates, vérification automatique de programmes, algorithmique des graphes, etc.), et admet différentes approches selon
la structure de E et les propriétés de f. On considérera ici le cas d’un ensemble de la forme E, = {0,1,...,n —1}.

On représentera une application f : E, — FE, par une liste Python L de longueur n, autrement dit f(x) = L[x]
pour tout = tel que 0 <z < n— 1.

Ainsi 'application fy qui & z € Fqq associe 2z + 1 modulo 10 est-elle représentée par la liste Python L suivante :

i 01 2 3 4 5 6 7 8 9
tfi] 1 3 5 7 9 1 3 5 7 9

Pour lever toute ambiguité, cette liste serait créée avec l'instruction L = [1,3,5,7,9,1,3,5,7,9].



Joffre / Daudet — MPSI Concours blanc 2016

Partie I — Echauffement

» Question 1 Quelle application est représentée par la liste [1,1,1,1]? Aucune justification n'est demandée.

» Question 2 Ecrire une fonction Python constante(a,n) qui prend en argument un entier n et un entier a € F,, et
. . . — E, — E
renvoie la liste représentant 1’application constante { " . "

» Question 3

a. Ecrire une fonction Python max (L) qui prend en argument une liste L d’entiers, non nécessairement triée (c’est-a-
dire que les entiers peuvent figurer dans la liste dans n’importe quel ordre), et renvoie le maximum des éléments de L.

b. Ecrire une fonction Python recherche_dichotomique(a,Lt) qui prend en argument un entier a et une liste triée
d’entiers Lt (c’est-a-dire que les entiers sont rangés de maniére croissante, comme par exemple [1,3,4,6,7]), et
renvoie True si I’élément a est dans la liste Lt et False sinon, en utilisant 1’algorithme de recherche dichotomique.
Donner sans démonstration la complexité de cet algorithme.

Ces fonctions existent déja en Python mais on demande de les reprogrammer.

Partie II — Recherche de point fixe : cas général
On rappelle que z est un point fixe de l’application f si et seulement si f(z) = x.

» Question 4 FEcrire une fonction Python admet_point_fixe (L) qui prend en argument une liste L et renvoie True si
Papplication f : E, — E, représentée par L admet un point fixe, False sinon (n est donc ici la longueur de L). Par
exemple, admet_point_fixe devra renvoyer True pour la liste donnée en introduction, puisque 9 est un point fixe de
I’application fy qui & x associe 22 + 1 modulo 10.

» Question 5 Ecrire une fonction Python nb_points_fixes (L) qui prend en argument une liste L et renvoie le nombre
de points fixes de lapplication f : E, — E, représentée par L (n est donc ici la longueur de L). Par exemple,
nb_point_fixes devra renvoyer 1 pour la liste donnée en introduction, puisque 9 est le seul point fixe de fj.

E, — FE
x = f(fe.. f®)...)

——
k fois

Dans la suite, on note f* I'itérée k-iéme de f, autrement dit Papplication f* :

» Question 6 Ecrire une fonction Python itere(L,x,k) qui prend en premier argument une liste L représentant une
fonction f : E, — FE, (n est donc ici la longueur de L), en deuxiéme et troisiéme arguments des entiers z,k de E,, et
qui renvoie f*(z).

» Question 7 Ecrire une fonction Python nb_points_fixes_iteres(L,k) qui prend en premier argument une liste L
représentant une application f : E,, — E, (n est donc ici la longueur de L), en deuxiéme argument un entier k > 0, et
qui renvoie le nombre de points fixes de f*.

Un élément 2z € F, est dit attracteur principal de f : E, — F, lorsque z est un point fixe de f et que pour tout =z € E,,,
il existe un entier & > 0 tel que f*(z) = z. Lorsque c’est le cas, on admet que pour tout = € E,, on a f*(x) = z (ce qui
se montre facilement & 1’aide du principe des tiroirs).

Pour illustrer cette notion : la fonction f; représentée par la liste ci-dessous admet 2 comme attracteur principal. Il n’est
pas demandé de le montrer.

1
i}

i
L[i]

N DN

0 3 4 5 6
) 2 0 2 2

En revanche, on notera que la fonction f; donnée en introduction n’admet pas d’attracteur principal puisque f¥(0) # 9
quel que soit 'entier k£ > 0.



Joffre / Daudet — MPSI Concours blanc 2016

» Question 8 FEcrire une fonction Python admet_attracteur_principal(L) qui prend en argument une liste L et
renvoie True si et seulement si 'application f : E,, — FE, représentée par L admet un attracteur principal, False sinon
(n est donc ici la longueur de L). On n’impose ici aucune complexité particuliére.

On suppose aux questions [0 a[TI que f admet un attracteur principal. Le temps de convergence de f en z € E,, est le
plus petit entier k& > 0 tel que f*(z) soit un point fixe de f. Pour I'application f; ci-dessus, le temps de convergence en
4 est 3. En effet, f1(4) =0, f2(4) = 5, f(4) = 2, et 2 est un point fixe de f1. On note tc(f,z) le temps de convergence
de f en x.

On notera que, d’apreés la propriété admise, le temps de convergence de f en z est toujours inférieur a n.

» Question 9 FEcrire une fonction Python temps_de_convergence(L,x) qui prend en premier argument une liste L
représentant une application f : E, — E, qui admet un attracteur principal (n est donc ici la longueur de L), en
deuxiéme argument un entier = de E,,, et renvoie le temps de convergence de f en .

» Question 10 Ecrire une fonction Python temps_de_convergence_max(L) qui prend en argument une liste L repré-

sentant une application f : E, — E, qui admet un attracteur principal, et renvoie max te(f, x).
SO
On impose dans cette question un temps de calcul au plus quadratique en la longueur n de la liste (i. e. en O(n?)). On

ne demande pas de démonstration de la complexité de la solution proposée, mais il est impératif d’expliquer clairement
le fonctionnement de votre fonction Python.

» Question 11 Reprendre la fonction temps_de_convergence_max(L) de sorte que sa complexité soit linéaire en la
longueur n de la liste (i. e. en O(n)). On ne demande pas de démonstration de la complexité de la solution proposée,
mais il est impératif d’expliquer clairement le fonctionnement de votre fonction Python.

A titre d’indication, on pourra au besoin créer des listes intermédiaires au cours du calcul.

Partie III — Recherche logarithmique dans un cas particulier
Toute fonction Python point_fixe(L) retournant un point fixe d’une fonction arbitraire est de complexité au mieux
linéaire en la longueur de L. Il existe des améliorations possibles de cette complexité lorsque la fonction considérée posséde

certaines propriétés spécifiques.

On se limitera ici au cas d’une application croissante de F,, dans F,. On rappelle qu'une application f : E, — FE, est
croissante si et seulement si pour tous z,y € E, tels que = < y, f(x) < f(y).

On admet que pour toute partie A C E,,, une application croissante de A dans A admet toujours un point fixe.

A titre d’exemple, application dont la liste et le graphe sont donnés ci-dessous est croissante. Elle a deux points fixes,
& savoir les entiers 5 et 7.

f(z)

O
~ =
~1
0w ©

wW =
W N
Ut W
Ut Ot
~N o

K t[i]

X

» Question 12 Ecrire une fonction Python est_croissante(L) qui prend en argument une liste L et renvoie True si
I’application représentée par L est croissante, et False sinon. On impose un temps de calcul linéaire en la longueur n
de la liste. On ne demande pas de démonstration du fait que le temps de calcul de la solution proposée est linéaire.



Joffre / Daudet — MPSI Concours blanc 2016

» Question 13 Ecrire une fonction Python point_fixe(L) qui prend en argument une liste L représentant une appli-
cation croissante f : F,, — E, (n est donc ici la longueur de L), et retourne un entier € F, tel que f(z) = z. On
impose un temps de calcul logarithmique en la longueur n de la liste : pour ce faire, on pourra s’inspirer de la question
3.b. On ne demande pas ici de démonstration du fait que le temps de calcul de la solution proposée est logarithmique.

» Question 14 Démontrer que la fonction Python de la question [13] termine.

» Question 15 Justifier que le temps de calcul est logarithmique en la longueur n de la liste.

[FIN DE L’EPREUVE}




	Échauffement
	Recherche de point fixe : cas général
	Recherche logarithmique dans un cas particulier

